-- dump date   	20240521_004435
-- class       	Genbank::mRNA
-- table       	mrna_note
-- id	note
133434000001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
133434000055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434000064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434000075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434000098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434000099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 194 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434000109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
133434000110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
133434000113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 ESTs, 131 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74% coverage of the annotated genomic feature by RNAseq alignments
133434000123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434000145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434000152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434000153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 79% coverage of the annotated genomic feature by RNAseq alignments
133434000155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434000205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434000207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434000246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434000276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 80% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434000367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins
133434000369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 185 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434000405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 58% coverage of the annotated genomic feature by RNAseq alignments
133434000433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 143 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 143 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434000517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434000524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 106 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434000551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57% coverage of the annotated genomic feature by RNAseq alignments
133434000570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434000580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 ESTs, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 ESTs, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
133434000612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434000617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 73% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 116 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 116 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434000655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434000661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 ESTs, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434000714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
133434000730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 83% coverage of the annotated genomic feature by RNAseq alignments
133434000744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434000760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434000763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 182 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434000853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434000855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000860	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434000920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
133434000928	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434000929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434000943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434000945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434000947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
133434000954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434000956	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434000960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434000967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434000972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434000974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434000975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434000979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 12 ESTs, 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434000980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434000981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 203 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 203 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434000984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 204 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 204 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 204 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 204 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 204 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434000990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434000995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434000996	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 181 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434000998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 181 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434000999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 181 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 797 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 797 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 797 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 797 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 798 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001090	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 371 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 710 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434001191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434001203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001233	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76% coverage of the annotated genomic feature by RNAseq alignments
133434001274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
133434001281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001309	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 115 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434001324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29% coverage of the annotated genomic feature by RNAseq alignments
133434001333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434001352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 ESTs, 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 ESTs, 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434001388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 54% coverage of the annotated genomic feature by RNAseq alignments
133434001412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
133434001426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001440	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
133434001444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 610 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434001543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001546	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89% coverage of the annotated genomic feature by RNAseq alignments
133434001560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001584	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 ESTs, 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434001649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434001657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
133434001658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments
133434001659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
133434001666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434001667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
133434001668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
133434001669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
133434001670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434001693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 39% coverage of the annotated genomic feature by RNAseq alignments
133434001697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434001698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments
133434001765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434001769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434001797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434001833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
133434001847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 109 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434001884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434001932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434001942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434001953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434001954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434001965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434001967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434001970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434001974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434001978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434001983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434001990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434001991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434001992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434001994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434001996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434001997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434001998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434001999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434002025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434002045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434002076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
133434002095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002102	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
133434002112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 420 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 419 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 420 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 420 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
133434002133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments
133434002136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
133434002137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434002148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434002193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434002224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
133434002226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434002272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434002304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434002305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434002308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 64% coverage of the annotated genomic feature by RNAseq alignments
133434002315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434002385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 109 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 116 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434002506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434002513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
133434002548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins
133434002550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
133434002609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002647	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 250 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434002698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 132 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 257 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
133434002744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
133434002753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
133434002754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434002848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434002849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
133434002850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
133434002879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins
133434002883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434002895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
133434002897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434002913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 ESTs, 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
133434002933	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
133434002935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434002944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434002947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434002951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434002958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434002959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002963	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434002966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434002970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434002973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434002977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434002984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434002987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434002988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434002992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434002993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434002995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434002996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434002997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434002998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434002999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434003019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434003025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 61% coverage of the annotated genomic feature by RNAseq alignments
133434003092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434003163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65% coverage of the annotated genomic feature by RNAseq alignments
133434003164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments
133434003165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
133434003168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434003177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434003185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 696 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 698 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 698 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 698 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 698 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 698 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 698 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434003341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434003357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434003416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
133434003449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434003480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434003495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003534	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434003567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434003636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434003637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 107 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434003644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434003684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003710	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434003731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003737	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434003743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
133434003753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434003879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434003888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434003901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434003910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434003926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434003935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434003936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434003941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434003965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434003975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434003981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434003983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434003988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434003990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434003991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434003992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434003994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434003996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434003997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434003998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434003999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434004044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434004071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434004091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434004100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004108	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434004109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24% coverage of the annotated genomic feature by RNAseq alignments
133434004166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434004167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434004191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36% coverage of the annotated genomic feature by RNAseq alignments
133434004212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434004228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434004230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434004231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434004232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
133434004274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
133434004309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004319	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67% coverage of the annotated genomic feature by RNAseq alignments
133434004325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins
133434004362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 168 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 168 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434004440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434004441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434004442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434004444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434004473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
133434004483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434004518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004519	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434004602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434004609	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434004654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434004673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434004684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004762	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins
133434004778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434004789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434004806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434004831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434004841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434004842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins
133434004843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 31% coverage of the annotated genomic feature by RNAseq alignments
133434004867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434004869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434004872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434004877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 126 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004922	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434004938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434004942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434004959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434004962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434004964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434004969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434004975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434004978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434004980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434004983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434004990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434004992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434004994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434004995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434004996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434004997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434004998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434004999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 129 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 120 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 1 EST, 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 1 EST, 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 1 EST, 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 90 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 106 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 35 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434005058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434005063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 109 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 109 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 109 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61% coverage of the annotated genomic feature by RNAseq alignments
133434005156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
133434005158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
133434005194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434005209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
133434005244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434005269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins
133434005275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 114 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005285	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434005286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434005309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434005386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434005422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 mRNAs, 60 ESTs, 537 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 192 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 192 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 192 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 192 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 192 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 192 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434005565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434005569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434005583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005586	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
133434005587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 122 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins
133434005592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins
133434005593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
133434005594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
133434005595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins
133434005596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
133434005597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434005598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434005612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434005619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434005641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434005660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434005682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 ESTs, 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
133434005704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434005748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434005780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434005786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 68% coverage of the annotated genomic feature by RNAseq alignments
133434005832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 ESTs, 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005856	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434005867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins
133434005879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434005888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 778 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 778 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005916	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434005938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins
133434005939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434005940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
133434005949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins
133434005953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
133434005957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434005963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434005965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434005970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434005974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 155 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 154 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434005979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434005980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434005981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434005982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434005984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434005987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434005989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434005991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434005992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434005993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434005997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434005998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434005999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434006021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 154 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 154 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434006186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 232 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 224 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
133434006215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434006269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434006272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 1 EST, 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434006315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434006321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434006381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
133434006385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434006386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434006403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434006443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89% coverage of the annotated genomic feature by RNAseq alignments
133434006502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006508	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 490 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 673 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 674 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 ESTs, 245 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 108 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 828 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 829 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 ESTs, 222 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 ESTs, 853 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 852 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 78 ESTs, 857 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 ESTs, 852 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 856 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 776 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 826 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 861 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 851 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1076 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434006591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 565 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 556 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434006638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434006643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006685	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434006702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006707	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 581 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 268 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434006760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434006773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 592 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 603 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 576 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 366 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 149 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 ESTs, 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 ESTs, 625 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 ESTs, 444 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 ESTs, 203 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 589 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006811	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 ESTs, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
133434006815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434006818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434006847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006850	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434006893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434006906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434006937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434006949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins
133434006958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434006959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434006960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 43% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434006966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434006968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434006969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 106 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 106 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434006972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 106 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434006982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434006986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434006988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434006990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434006992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434006993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434006997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434006998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434006999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434007000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
133434007012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434007042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 104 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 140 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 140 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 140 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 140 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434007075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
133434007086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434007095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
133434007100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments
133434007130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434007133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 143 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434007142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434007169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434007178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments
133434007200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins
133434007226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434007228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 61% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434007309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007327	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434007370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434007490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434007530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434007599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
133434007640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins
133434007652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 ESTs, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434007679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
133434007681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434007736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434007806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434007820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434007866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434007873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007877	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434007909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434007930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434007936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007949	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434007959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434007965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434007968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434007969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434007979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434007985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434007986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434007989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434007992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434007993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434007995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434007996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434007997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434007998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434007999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434008002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434008024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434008059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434008060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434008129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 23% coverage of the annotated genomic feature by RNAseq alignments
133434008130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434008134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434008155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434008158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
133434008159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments
133434008165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434008166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434008192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85% coverage of the annotated genomic feature by RNAseq alignments
133434008193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 74% coverage of the annotated genomic feature by RNAseq alignments
133434008215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434008248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434008249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins
133434008280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008307	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 891 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434008332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1129 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434008333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434008341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 49% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 209 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 209 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 209 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 221 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 221 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 221 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 221 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434008485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
133434008494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434008506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434008573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50% coverage of the annotated genomic feature by RNAseq alignments
133434008593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73% coverage of the annotated genomic feature by RNAseq alignments
133434008594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434008596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56% coverage of the annotated genomic feature by RNAseq alignments
133434008653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434008654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
133434008691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434008694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins
133434008696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
133434008697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434008708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434008710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
133434008712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434008713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 261 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434008763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434008767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
133434008785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434008789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434008790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434008791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
133434008809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
133434008810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434008823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434008834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434008860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments
133434008881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins
133434008888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434008898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434008899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434008903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434008906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
133434008925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
133434008927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434008932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434008933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434008940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434008947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008949	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434008951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
133434008955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434008956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434008961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434008972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 191 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
133434008975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434008976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434008978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434008982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434008987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434008988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434008993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434008995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434008996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434008997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434008998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434008999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 135 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 160 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434009045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 186 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434009046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009059	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
133434009064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434009070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 56% coverage of the annotated genomic feature by RNAseq alignments
133434009071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
133434009092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434009094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434009102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 9% coverage of the annotated genomic feature by RNAseq alignments
133434009112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
133434009141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434009153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434009156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434009171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434009199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 147 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 130 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434009305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434009306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434009317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434009318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 253 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 253 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 253 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434009365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434009366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434009396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
133434009441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434009465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434009475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434009495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009497	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 104 ESTs, 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 402 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 344 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 164 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 269 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434009536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434009567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 mRNAs, 2 ESTs, 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009684	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
133434009688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
133434009689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434009721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009722	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434009736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434009737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434009757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434009829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 80% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
133434009882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434009946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434009948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434009954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434009968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 132 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434009970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434009974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434009975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434009980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434009981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434009982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434009983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434009985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434009987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434009989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434009993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434009994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434009997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434009998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434009999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434010030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434010070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 ESTs, 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 ESTs, 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434010121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 37% coverage of the annotated genomic feature by RNAseq alignments
133434010122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 144 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434010123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 159 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434010182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434010188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434010205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010243	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 23% coverage of the annotated genomic feature by RNAseq alignments
133434010244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434010325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434010335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins
133434010336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 145 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
133434010422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
133434010423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010443	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
133434010453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434010482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434010493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434010497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 199 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 199 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 199 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 199 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 199 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 199 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 199 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434010526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434010543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins
133434010559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010565	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434010585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments
133434010601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434010612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 76% coverage of the annotated genomic feature by RNAseq alignments
133434010627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
133434010648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
133434010649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 140 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434010798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
133434010814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins
133434010826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434010880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
133434010900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 158 ESTs, 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 200 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 200 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
133434010923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434010953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434010962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 101 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434010965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434010968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434010979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434010980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434010983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434010989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434010990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434010991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434010992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434010993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434010994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434010995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434010996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434010997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434010998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434010999	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434011027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434011057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434011104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434011111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011116	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434011148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434011176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434011180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434011182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434011302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011319	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 140 ESTs, 95 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434011398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011405	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434011489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434011490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 ESTs, 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 ESTs, 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 118 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434011503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434011504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
133434011506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434011526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011542	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins
133434011552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434011564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434011571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
133434011574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
133434011585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434011600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434011606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434011607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011643	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434011644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434011681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434011682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434011683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434011734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
133434011800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434011802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434011862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
133434011877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 ESTs, 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 106 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 255 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434011933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434011941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011944	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434011963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434011967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
133434011971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434011977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434011979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434011980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434011983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434011984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434011988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434011989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434011991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434011992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434011993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434011995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434011996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434011997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434011999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434012018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434012042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012052	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434012060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
133434012072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434012073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 5% coverage of the annotated genomic feature by RNAseq alignments
133434012114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins
133434012115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434012136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434012168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 62% coverage of the annotated genomic feature by RNAseq alignments
133434012189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 ESTs, 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434012206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
133434012230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments
133434012249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments
133434012252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012293	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 56% coverage of the annotated genomic feature by RNAseq alignments
133434012294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434012295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434012309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
133434012313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434012337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
133434012340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434012349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434012352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 ESTs, 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 285 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434012415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434012425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434012429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434012430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
133434012495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434012496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
133434012502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 140 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434012526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012549	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434012553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434012568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 14% coverage of the annotated genomic feature by RNAseq alignments
133434012580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins
133434012582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434012593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 210 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 218 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 218 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 109 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 347 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 347 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434012610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434012623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434012624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012643	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 196 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68% coverage of the annotated genomic feature by RNAseq alignments
133434012703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 14% coverage of the annotated genomic feature by RNAseq alignments
133434012705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434012735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 34% coverage of the annotated genomic feature by RNAseq alignments
133434012736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434012738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434012758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434012827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
133434012844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012860	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 402 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 402 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434012875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments
133434012889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434012893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434012919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434012922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434012926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012928	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434012966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434012968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434012969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434012972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434012975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434012976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434012981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434012982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434012986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434012988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434012990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434012991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434012994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434012995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434012996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434012998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434012999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434013003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434013044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434013050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434013086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
133434013108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
133434013117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434013118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434013130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71% coverage of the annotated genomic feature by RNAseq alignments
133434013131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 ESTs, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 59% coverage of the annotated genomic feature by RNAseq alignments
133434013162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434013191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 124 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434013200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434013226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434013240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013253	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013281	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434013330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434013333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434013337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434013379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434013380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434013381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434013382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins
133434013398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins
133434013400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434013406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
133434013411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
133434013412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments
133434013442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
133434013458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434013600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434013652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
133434013673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434013700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434013711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434013720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434013730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434013731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
133434013736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434013741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434013752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434013753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434013800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
133434013810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013827	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434013866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
133434013873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434013877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
133434013880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013926	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
133434013930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434013959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434013964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434013971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 114 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434013976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434013977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434013978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434013980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434013983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434013986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434013989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434013991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434013993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434013994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434013995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434013996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434013997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434013998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434013999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434014027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments
133434014033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434014034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434014059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434014114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins
133434014188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434014189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434014190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
133434014191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
133434014192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
133434014210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins
133434014215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434014232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434014242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434014252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434014278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 217 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 216 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434014288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
133434014303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434014335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
133434014360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
133434014363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434014398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434014420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 ESTs, 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 329 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
133434014523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434014524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
133434014525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014529	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 79% coverage of the annotated genomic feature by RNAseq alignments
133434014565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1248 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434014578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 675 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 542 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434014609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434014648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 101 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 101 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 101 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434014763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434014793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434014807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 ESTs, 88 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014829	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 179 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
133434014843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434014844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434014846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434014862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014869	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434014892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434014893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
133434014894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
133434014895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434014914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434014916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014921	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
133434014929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 174 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 176 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014938	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434014953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434014965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434014968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434014976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434014981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434014988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434014989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434014990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434014991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434014992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434014993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434014994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434014995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434014996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434014998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434014999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434015001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434015020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434015025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434015026	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434015034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments
133434015035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434015036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434015037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434015061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
133434015062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434015063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434015078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434015079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434015106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434015107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015111	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434015112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 799 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 467 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
133434015138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 ESTs, 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434015170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
133434015211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434015378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434015406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434015420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434015425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434015440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434015441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434015448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434015449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015454	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015509	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
133434015534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434015536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434015544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 385 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 385 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 385 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 391 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 391 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 151 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434015589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments
133434015598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015608	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434015614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015630	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
133434015641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434015661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015669	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434015670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434015701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434015741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83% coverage of the annotated genomic feature by RNAseq alignments
133434015748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434015756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434015757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
133434015761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50% coverage of the annotated genomic feature by RNAseq alignments
133434015802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434015814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59% coverage of the annotated genomic feature by RNAseq alignments
133434015845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 149 ESTs, 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434015896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 336 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434015938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 119 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 119 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434015963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434015967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434015970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434015976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434015977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434015978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434015987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434015988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434015990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434015991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434015992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434015995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434015996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434015997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434015998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434015999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 mRNAs, 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434016047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434016061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434016062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434016065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434016066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 114 ESTs, 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 114 ESTs, 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434016158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 521 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 521 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 521 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 521 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 521 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434016238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 50% coverage of the annotated genomic feature by RNAseq alignments
133434016252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434016270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 mRNAs, 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434016328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
133434016333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78% coverage of the annotated genomic feature by RNAseq alignments
133434016335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
133434016364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments
133434016394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016404	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
133434016406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434016440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434016441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434016442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434016443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434016525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434016545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434016577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 49% coverage of the annotated genomic feature by RNAseq alignments
133434016611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434016613	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 ESTs, 72 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434016683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434016684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434016688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434016696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 ESTs, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434016740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434016746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
133434016751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016753	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434016762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434016816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 ESTs, 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434016874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434016875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434016900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434016903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434016931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434016941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434016966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434016970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434016971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434016978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434016980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434016981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434016984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434016986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434016990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434016991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434016992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434016994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434016998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434016999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434017012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434017017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 ESTs, 219 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 107 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 356 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 356 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 356 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 356 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 356 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
133434017128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72% coverage of the annotated genomic feature by RNAseq alignments
133434017166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85% coverage of the annotated genomic feature by RNAseq alignments
133434017167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434017168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 14% coverage of the annotated genomic feature by RNAseq alignments
133434017169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins
133434017170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 62% coverage of the annotated genomic feature by RNAseq alignments
133434017175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017176	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins
133434017188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434017214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434017220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434017235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434017236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434017237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434017238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
133434017241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434017284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 191 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434017292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434017329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434017342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434017349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434017350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
133434017399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434017405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434017443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 186 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 137 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments
133434017480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
133434017512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434017561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434017586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434017595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
133434017649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434017658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434017684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434017739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434017751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
133434017773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017794	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434017823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434017843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 ESTs, 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
133434017901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434017922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434017929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434017940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434017943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434017949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434017950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434017951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434017952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434017959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434017960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments
133434017967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434017978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins
133434017979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434017981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434017982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434017983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
133434017984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434017985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017986	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434017989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434017990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434017992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434017993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434017996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434017997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434017998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434017999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 364 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 279 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 279 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 279 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 148 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434018028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 200 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
133434018030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434018041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
133434018056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 51% coverage of the annotated genomic feature by RNAseq alignments
133434018058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434018084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434018087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434018113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434018129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434018148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434018182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434018241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434018243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 124 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434018287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434018288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018342	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46% coverage of the annotated genomic feature by RNAseq alignments
133434018348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434018362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434018389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434018393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
133434018394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 176 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 153 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434018510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins
133434018557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 118 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 118 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434018583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 52% coverage of the annotated genomic feature by RNAseq alignments
133434018592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434018619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434018685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 170 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 170 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 121 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 170 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434018708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
133434018715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434018738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 132 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434018786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434018787	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434018825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434018827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
133434018829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 100 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 100 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434018837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434018887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434018944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434018953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434018966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434018971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434018974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434018975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434018976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434018977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434018979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434018984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434018986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434018988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434018990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434018991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434018994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434018996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434018997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434018998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434018999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 119 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434019032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
133434019033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434019038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019052	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434019054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
133434019080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434019081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
133434019082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434019083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434019106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
133434019131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434019145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434019172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41% coverage of the annotated genomic feature by RNAseq alignments
133434019173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019198	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434019199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89% coverage of the annotated genomic feature by RNAseq alignments
133434019220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434019230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434019253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434019256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434019258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019263	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019277	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434019278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
133434019310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 36% coverage of the annotated genomic feature by RNAseq alignments
133434019314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
133434019315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434019323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434019325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434019342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434019353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434019371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434019395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434019396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins
133434019410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 12% coverage of the annotated genomic feature by RNAseq alignments
133434019417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
133434019418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
133434019419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
133434019420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
133434019421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434019492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434019520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434019545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434019607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434019629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
133434019637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434019638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 52% coverage of the annotated genomic feature by RNAseq alignments
133434019652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments
133434019671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434019672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 46% coverage of the annotated genomic feature by RNAseq alignments
133434019673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434019736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 910 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434019792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 907 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 909 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434019800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 909 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 mRNAs, 19 ESTs, 912 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 mRNAs, 19 ESTs, 912 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 648 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 648 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 648 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins
133434019820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434019829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins
133434019830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434019831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
133434019836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434019837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434019838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
133434019839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434019842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 ESTs, 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434019858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434019891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434019925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434019938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434019949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434019951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 mRNAs, 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 mRNAs, 5 ESTs, 292 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434019954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434019963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434019967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434019974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434019976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434019978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434019980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434019981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434019982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53% coverage of the annotated genomic feature by RNAseq alignments
133434019986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434019987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434019988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434019989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434019991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434019993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434019997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434019998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434019999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434020008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 29% coverage of the annotated genomic feature by RNAseq alignments
133434020021	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434020045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020052	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434020073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434020082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434020083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434020119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
133434020131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020198	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434020206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434020231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434020274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434020285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434020288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020354	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434020373	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434020377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434020381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434020382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434020389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434020392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434020421	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 56% coverage of the annotated genomic feature by RNAseq alignments
133434020442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434020443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434020444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434020445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434020454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434020460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434020474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434020479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434020527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434020541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
133434020555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434020564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434020571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85% coverage of the annotated genomic feature by RNAseq alignments
133434020585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434020614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 108 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 108 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 108 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 108 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434020634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 11 ESTs, 36 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
133434020690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins
133434020691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins
133434020692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434020698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434020699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434020741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72% coverage of the annotated genomic feature by RNAseq alignments
133434020747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434020764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434020766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 577 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434020780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434020799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434020856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
133434020891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434020892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434020909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434020926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434020953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434020960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434020969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434020970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434020972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434020973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434020974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434020978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434020981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434020982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434020985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434020988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434020989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434020990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434020992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434020994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434020997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434020999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434021024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434021027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021041	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 136 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434021091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
133434021123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434021175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434021183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 55% coverage of the annotated genomic feature by RNAseq alignments
133434021186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434021188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 166 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434021212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434021222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021263	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434021293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434021300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434021367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434021372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 83% coverage of the annotated genomic feature by RNAseq alignments
133434021374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 418 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
133434021383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434021385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434021387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
133434021390	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
133434021391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 118 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
133434021447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021475	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434021489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434021493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434021530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434021531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434021544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434021545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434021546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins
133434021557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434021565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434021605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434021669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
133434021670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434021673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins
133434021702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 213 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434021775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 52% coverage of the annotated genomic feature by RNAseq alignments
133434021833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434021849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021861	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
133434021863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434021867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434021889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434021929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434021935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434021936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434021942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 114 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434021949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 131 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434021960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434021961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434021962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434021963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
133434021968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434021970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434021971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434021972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434021973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434021975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434021978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69% coverage of the annotated genomic feature by RNAseq alignments
133434021985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434021986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434021988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434021995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434021996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434021998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434021999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434022012	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434022013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434022014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434022040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434022042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434022049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434022053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434022095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434022152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434022163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434022178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434022180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 ESTs, 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022224	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434022262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 225 ESTs, 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434022273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434022285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 175 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434022324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434022344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022364	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434022504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins
133434022515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434022530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434022585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434022628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434022629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434022630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments
133434022631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434022640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434022641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434022659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434022668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434022669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434022681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434022682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
133434022700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
133434022701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434022711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434022791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434022818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins
133434022864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434022882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 32% coverage of the annotated genomic feature by RNAseq alignments
133434022884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
133434022886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 107 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 107 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 107 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 104 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 115 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 119 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 117 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434022914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
133434022921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434022945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434022956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434022962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434022966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434022970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments
133434022971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434022972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434022975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434022977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434022980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434022981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434022983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434022986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434022990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434022992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434022993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434022995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434022997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434022998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434022999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434023001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434023003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
133434023005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434023007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66% coverage of the annotated genomic feature by RNAseq alignments
133434023025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments
133434023027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
133434023070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434023082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 135 ESTs, 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins
133434023124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434023141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434023155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434023161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434023164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434023194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434023195	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434023196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434023201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434023225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 134 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 134 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 134 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
133434023279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments
133434023281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434023300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins
133434023330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434023331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434023336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434023348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434023361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
133434023362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434023367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434023381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 139 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 134 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434023481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434023487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 205 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
133434023493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
133434023494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins
133434023495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434023498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434023541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434023542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434023548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434023557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434023605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434023606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434023609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
133434023635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
133434023636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 76% coverage of the annotated genomic feature by RNAseq alignments
133434023637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 201 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434023682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434023691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434023724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434023728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434023757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434023766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434023781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 162 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 162 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 162 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434023785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434023802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434023871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434023874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434023881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79% coverage of the annotated genomic feature by RNAseq alignments
133434023882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434023908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434023930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434023931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434023944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434023947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434023973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434023977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434023979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434023980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434023982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434023985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434023986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434023988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434023989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434023992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434023994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434023995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434023996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434023997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434023998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434023999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434024015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 138 ESTs, 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434024025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434024056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 115 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434024073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
133434024082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434024123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments
133434024126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 76% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments
133434024139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79% coverage of the annotated genomic feature by RNAseq alignments
133434024181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434024207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins
133434024230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024258	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434024259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434024306	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434024353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
133434024357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024365	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434024393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments
133434024394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 37 ESTs, 163 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 187 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024416	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
133434024417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434024418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58% coverage of the annotated genomic feature by RNAseq alignments
133434024429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77% coverage of the annotated genomic feature by RNAseq alignments
133434024477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
133434024493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 47% coverage of the annotated genomic feature by RNAseq alignments
133434024496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434024500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434024507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77% coverage of the annotated genomic feature by RNAseq alignments
133434024516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
133434024539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434024550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434024557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434024561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 247 ESTs, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 396 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 396 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 401 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 406 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434024587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434024601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434024609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434024622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
133434024629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434024631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
133434024643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins
133434024658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434024661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
133434024682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434024683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 2 ESTs, 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434024761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434024799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76% coverage of the annotated genomic feature by RNAseq alignments
133434024817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434024848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434024858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434024859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 ESTs, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 180 ESTs, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434024895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434024904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434024918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434024921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434024924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434024925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024938	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434024943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434024948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434024950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434024962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434024970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
133434024971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434024972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434024974	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434024975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 59% coverage of the annotated genomic feature by RNAseq alignments
133434024976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434024977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434024978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins
133434024979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79% coverage of the annotated genomic feature by RNAseq alignments
133434024983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434024985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434024986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434024987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434024989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434024990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434024994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434024995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434024996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434024997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434024998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434024999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434025006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
133434025016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434025030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025066	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434025089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 18% coverage of the annotated genomic feature by RNAseq alignments
133434025132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434025140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65% coverage of the annotated genomic feature by RNAseq alignments
133434025141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434025142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434025148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434025270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434025305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434025322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434025330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434025337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434025349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
133434025395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434025535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025565	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434025594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434025599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434025601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 310 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 310 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
133434025649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434025650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434025686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 ESTs, 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434025726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434025742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
133434025744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
133434025745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434025746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434025770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
133434025771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
133434025775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 605 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 598 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434025804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434025806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434025830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
133434025835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
133434025838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434025839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434025847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434025875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 345 ESTs, 89 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434025910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 199 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 199 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 196 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434025932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434025934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434025943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434025947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434025958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434025964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434025966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434025968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434025973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025978	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434025980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434025981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434025983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434025988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434025990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434025991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434025993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434025996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434025998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434025999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026003	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026007	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins
133434026027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434026044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434026068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434026072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434026073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026094	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 76% coverage of the annotated genomic feature by RNAseq alignments
133434026191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 23% coverage of the annotated genomic feature by RNAseq alignments
133434026192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434026195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 662 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 598 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434026228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
133434026236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
133434026237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434026243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434026244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 54% coverage of the annotated genomic feature by RNAseq alignments
133434026246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 mRNAs, 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434026256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434026258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434026264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026265	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434026266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434026269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
133434026272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434026274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026297	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 157 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434026298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026300	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434026308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026321	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434026341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57% coverage of the annotated genomic feature by RNAseq alignments
133434026342	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434026343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434026345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434026377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
133434026385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins
133434026387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 52% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 ESTs, 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434026446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434026477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434026478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434026484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins
133434026503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434026509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434026561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434026562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
133434026579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026598	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 20% coverage of the annotated genomic feature by RNAseq alignments
133434026600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434026601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments
133434026602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
133434026609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434026622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434026623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins
133434026646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 133 ESTs, 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026736	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 ESTs, 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434026765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
133434026777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434026790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434026805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins
133434026819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434026861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 108 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 305 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434026874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 101 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 101 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins
133434026894	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 101 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 205 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 205 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 200 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 200 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 142 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434026935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 ESTs, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 ESTs, 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434026949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026950	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434026953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434026959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434026960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434026967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434026970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434026973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434026977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434026979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434026981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434026985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434026986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434026989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434026990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434026992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434026993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434026994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434026997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434026998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434026999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434027003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434027024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 ESTs, 64 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74% coverage of the annotated genomic feature by RNAseq alignments
133434027065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434027091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 122 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434027121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
133434027188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434027189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434027191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
133434027212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434027214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
133434027218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434027220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434027221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments
133434027223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
133434027233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434027235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins
133434027236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434027248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51% coverage of the annotated genomic feature by RNAseq alignments
133434027251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 33% coverage of the annotated genomic feature by RNAseq alignments
133434027266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 226 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434027317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434027341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434027355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434027356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434027360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027378	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434027404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 ESTs, 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 74% coverage of the annotated genomic feature by RNAseq alignments
133434027422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 82% coverage of the annotated genomic feature by RNAseq alignments
133434027425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
133434027459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434027520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434027524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
133434027558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434027584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434027593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins
133434027656	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
133434027657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
133434027658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97 Proteins
133434027660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434027661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24% coverage of the annotated genomic feature by RNAseq alignments
133434027679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
133434027681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
133434027684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins
133434027686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
133434027687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434027688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434027689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434027734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434027822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434027861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434027864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 148 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434027874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434027905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434027916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434027919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434027935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 151 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434027953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434027966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins
133434027971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434027972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434027976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434027979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434027981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434027983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434027984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434027987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434027988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434027990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434027993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434027994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434027995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434027998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434027999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
133434028000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 7% coverage of the annotated genomic feature by RNAseq alignments
133434028023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434028053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 ESTs, 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75% coverage of the annotated genomic feature by RNAseq alignments
133434028080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434028081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434028084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
133434028150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434028174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434028186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434028217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434028248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 156 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
133434028250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434028281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434028306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434028339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 179 ESTs, 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434028341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 ESTs, 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 202 ESTs, 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 152 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 152 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 152 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434028460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028463	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434028473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
133434028475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
133434028476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
133434028477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434028493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
133434028506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57% coverage of the annotated genomic feature by RNAseq alignments
133434028512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434028532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79% coverage of the annotated genomic feature by RNAseq alignments
133434028545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78% coverage of the annotated genomic feature by RNAseq alignments
133434028617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434028620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
133434028632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434028663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments
133434028689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 32% coverage of the annotated genomic feature by RNAseq alignments
133434028703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 50% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
133434028715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 ESTs, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 ESTs, 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77% coverage of the annotated genomic feature by RNAseq alignments
133434028765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434028773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
133434028775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83% coverage of the annotated genomic feature by RNAseq alignments
133434028779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434028817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434028836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434028895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434028901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434028903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434028905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins
133434028910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434028911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434028912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 522 Proteins
133434028913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434028914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434028915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
133434028917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434028918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434028936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434028946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434028952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434028966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434028969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434028973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434028974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434028975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434028976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434028982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434028987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434028988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434028990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434028991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434028992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434028994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434028995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434028997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434028998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434028999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434029018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434029019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434029021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434029022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434029023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434029032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434029039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434029053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434029054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434029055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029089	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434029093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434029094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 ESTs, 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434029131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 212 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
133434029147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
133434029182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins
133434029183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434029194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434029210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434029213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434029215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434029219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76% coverage of the annotated genomic feature by RNAseq alignments
133434029228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434029247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
133434029258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029260	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 60% coverage of the annotated genomic feature by RNAseq alignments
133434029261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins
133434029290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 18% coverage of the annotated genomic feature by RNAseq alignments
133434029291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins
133434029292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins
133434029293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434029331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82% coverage of the annotated genomic feature by RNAseq alignments
133434029346	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434029347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434029400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434029431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
133434029442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434029453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434029501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 69 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 ESTs, 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 258 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 143 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 222 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 259 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434029607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments
133434029613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029632	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434029692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434029696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029727	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
133434029761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434029838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434029840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434029841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 545 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 544 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 545 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 545 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 545 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434029917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434029918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434029922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 24 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434029936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434029951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434029952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434029953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 52% coverage of the annotated genomic feature by RNAseq alignments
133434029964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434029965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434029975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029977	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434029979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434029981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434029984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434029986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434029987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434029989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434029990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434029991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434029993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434029994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434029997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434029999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
133434030014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434030053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434030066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments
133434030070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
133434030071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
133434030072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434030081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69% coverage of the annotated genomic feature by RNAseq alignments
133434030082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66% coverage of the annotated genomic feature by RNAseq alignments
133434030084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434030085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434030096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
133434030102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434030118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 39% coverage of the annotated genomic feature by RNAseq alignments
133434030119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434030121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83% coverage of the annotated genomic feature by RNAseq alignments
133434030122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434030123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434030156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 217 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434030216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434030239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030240	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434030241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434030299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85% coverage of the annotated genomic feature by RNAseq alignments
133434030314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434030344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434030346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434030354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434030374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434030394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 ESTs, 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434030450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
133434030486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 131 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434030499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434030512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434030526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434030527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 ESTs, 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434030553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030589	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434030590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 41% coverage of the annotated genomic feature by RNAseq alignments
133434030617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434030618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 106 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434030647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
133434030648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434030681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434030685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434030693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434030698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434030701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
133434030725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
133434030727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434030733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
133434030739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434030744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434030745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
133434030746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79% coverage of the annotated genomic feature by RNAseq alignments
133434030747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins
133434030748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 ESTs, 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434030766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 62% coverage of the annotated genomic feature by RNAseq alignments
133434030777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins
133434030778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 108 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 43% coverage of the annotated genomic feature by RNAseq alignments
133434030815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434030819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434030836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434030839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins
133434030850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
133434030874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434030898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 53 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434030912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434030917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434030925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434030927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434030943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434030951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434030959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434030964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434030976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434030980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434030981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
133434030982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434030983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434030984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
133434030988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434030989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434030991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434030994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434030995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434030997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434030998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434030999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434031025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
133434031030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031032	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434031033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434031036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434031043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434031044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434031051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434031070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031091	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434031096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434031118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434031158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89% coverage of the annotated genomic feature by RNAseq alignments
133434031160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59% coverage of the annotated genomic feature by RNAseq alignments
133434031161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81% coverage of the annotated genomic feature by RNAseq alignments
133434031162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434031163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434031169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434031178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 227 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434031188	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031221	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434031241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031249	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031255	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434031260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031264	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66% coverage of the annotated genomic feature by RNAseq alignments
133434031271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434031279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434031283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031307	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434031335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434031336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434031341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins
133434031375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031381	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 124 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 124 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 124 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434031401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434031420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031429	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
133434031488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434031502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031539	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434031542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 106 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 108 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19% coverage of the annotated genomic feature by RNAseq alignments
133434031594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434031610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
133434031619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
133434031631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434031636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 ESTs, 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031653	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434031656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434031668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434031711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434031730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031731	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 86% coverage of the annotated genomic feature by RNAseq alignments
133434031732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71% coverage of the annotated genomic feature by RNAseq alignments
133434031740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434031750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434031754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031794	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434031795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031796	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434031800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434031814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 236 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 236 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 236 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434031842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434031849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434031861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434031864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434031872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434031890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031894	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
133434031943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434031951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031961	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434031962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434031964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434031965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434031971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 63% coverage of the annotated genomic feature by RNAseq alignments
133434031973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434031975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434031976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434031977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031979	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434031980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77% coverage of the annotated genomic feature by RNAseq alignments
133434031981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434031983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434031990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434031991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434031992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434031994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434031995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434031996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434031997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434031998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434031999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434032022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434032034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032036	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434032037	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434032038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434032039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032048	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434032049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434032050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434032051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434032083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434032094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 mRNAs, 100 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 251 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67% coverage of the annotated genomic feature by RNAseq alignments
133434032142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
133434032154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434032162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67% coverage of the annotated genomic feature by RNAseq alignments
133434032177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434032186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 ESTs, 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032202	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032203	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032204	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032205	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032206	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434032207	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032208	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032209	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032210	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434032211	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032212	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032213	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032214	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032215	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032216	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032217	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032218	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032219	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032220	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032221	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032222	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032223	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments
133434032224	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032225	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032226	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032227	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032228	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032229	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032230	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032231	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032232	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032233	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032234	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032235	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032236	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032237	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032238	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032239	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032240	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032241	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032242	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032243	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032244	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032245	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032246	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032247	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032248	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032249	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 79% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032250	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032251	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032252	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434032253	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032254	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032255	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032256	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
133434032257	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032258	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032259	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032260	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032261	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032262	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032263	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032264	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032265	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032266	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032267	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032268	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032269	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032270	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032271	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032272	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032273	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032274	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032275	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032276	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032277	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032278	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434032279	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032280	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 110 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032281	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032282	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032283	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032284	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 82% coverage of the annotated genomic feature by RNAseq alignments
133434032285	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032286	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032287	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032288	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032289	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032290	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434032291	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032292	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032293	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032294	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032295	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032296	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032297	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032298	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032299	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032300	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032301	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032302	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032303	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032304	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032305	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032306	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032307	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032308	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032309	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 557 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032310	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032311	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032312	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032313	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032314	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032315	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032316	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032317	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032318	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032319	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434032320	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032321	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032322	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032323	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032324	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032325	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032326	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032327	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032328	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032329	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032330	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032331	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032332	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032333	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032334	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032335	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032336	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032337	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032338	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032339	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032340	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032341	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032342	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032343	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032344	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032345	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032346	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032347	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032348	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032349	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032350	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032351	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 ESTs, 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032352	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 81% coverage of the annotated genomic feature by RNAseq alignments
133434032353	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434032354	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032355	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032356	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032357	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032358	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032359	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032360	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032361	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032362	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032363	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032364	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032365	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032366	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032367	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032368	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032369	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032370	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032371	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032372	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032373	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032374	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032375	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032376	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032377	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032378	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032379	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032380	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
133434032381	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434032382	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032383	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032384	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032385	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032386	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032387	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032388	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032389	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032390	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434032391	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032392	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032393	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
133434032394	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032395	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032396	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032397	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032398	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032399	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434032400	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032401	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032402	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032403	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032404	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032405	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032406	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032407	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032408	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032409	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032410	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032411	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032412	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 80% coverage of the annotated genomic feature by RNAseq alignments
133434032413	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032414	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032415	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032416	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032417	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032418	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032419	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032420	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032421	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032422	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032423	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
133434032424	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434032425	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032426	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
133434032427	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434032428	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
133434032429	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
133434032430	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032431	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032432	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032433	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032434	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032435	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434032436	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032437	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434032438	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 46% coverage of the annotated genomic feature by RNAseq alignments
133434032439	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032440	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032441	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032442	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032443	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032444	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032445	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032446	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032447	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032448	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032449	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032450	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032451	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032452	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032453	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032454	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032455	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032456	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032457	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032458	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032459	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032460	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032461	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032462	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434032463	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032464	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032465	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032466	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032467	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 ESTs, 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434032468	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032469	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032470	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032471	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032472	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032473	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032474	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032475	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434032476	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032477	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032478	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032479	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434032480	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032481	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032482	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032483	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032484	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032485	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032486	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032487	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032488	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032489	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434032490	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032491	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032492	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032493	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032494	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032495	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434032496	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032497	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032498	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032499	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032500	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032501	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032502	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032503	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032504	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032505	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032506	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032507	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032508	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032509	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032510	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032511	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032512	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032513	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032514	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032515	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032516	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032517	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032518	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032519	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032520	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032521	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032522	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032523	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032524	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032525	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032526	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032527	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032528	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032529	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032530	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032531	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032532	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032533	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032534	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032535	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032536	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032537	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032538	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032539	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032540	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032541	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032542	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434032543	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032544	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
133434032545	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
133434032546	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
133434032547	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80% coverage of the annotated genomic feature by RNAseq alignments
133434032548	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434032549	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032550	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032551	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032552	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032553	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032554	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032555	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032556	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032557	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032558	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032559	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032560	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032561	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032562	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032563	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032564	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032565	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032566	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032567	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032568	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032569	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032570	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032571	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434032572	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032573	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032574	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032575	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032576	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032577	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032578	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032579	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
133434032580	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032581	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032582	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032583	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032584	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032585	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032586	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032587	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032588	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032589	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032590	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032591	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032592	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032593	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032594	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032595	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032596	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434032597	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434032598	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032599	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032600	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032601	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434032602	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032603	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032604	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032605	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032606	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032607	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032608	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032609	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032610	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032611	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032612	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032613	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032614	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032615	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032616	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032617	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032618	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032619	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032620	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032621	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032622	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032623	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032624	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032625	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032626	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032627	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032628	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032629	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032630	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032631	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032632	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032633	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032634	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032635	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032636	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032637	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
133434032638	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032639	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032640	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032641	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032642	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032643	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032644	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032645	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032646	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032647	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032648	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032649	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032650	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032651	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032652	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032653	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434032654	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032655	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032656	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032657	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032658	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032659	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032660	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032661	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032662	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032663	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032664	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032665	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032666	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032667	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032668	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434032669	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434032670	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57% coverage of the annotated genomic feature by RNAseq alignments
133434032671	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 50% coverage of the annotated genomic feature by RNAseq alignments
133434032672	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
133434032673	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032674	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032675	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032676	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032677	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032678	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032679	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032680	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032681	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032682	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032683	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032684	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434032685	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434032686	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032687	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032688	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032689	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032690	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032691	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032692	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032693	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032694	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032695	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032696	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032697	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032698	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032699	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032700	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032701	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032702	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032703	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032704	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032705	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032706	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032707	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032708	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032709	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032710	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032711	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032712	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032713	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434032714	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032715	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032716	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032717	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032718	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434032719	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032720	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032721	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032722	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032723	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032724	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434032725	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032726	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 499 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032727	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 499 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032728	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 500 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032729	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 499 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032730	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 499 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032731	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 40% coverage of the annotated genomic feature by RNAseq alignments
133434032732	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032733	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032734	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032735	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032736	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032737	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032738	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032739	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032740	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032741	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032742	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032743	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032744	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032745	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032746	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032747	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032748	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032749	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032750	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032751	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032752	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434032753	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032754	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032755	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032756	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032757	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032758	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032759	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032760	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032761	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032762	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032763	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032764	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434032765	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032766	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032767	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032768	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032769	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032770	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032771	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032772	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032773	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032774	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032775	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032776	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032777	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032778	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434032779	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032780	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032781	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032782	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032783	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032784	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032785	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032786	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032787	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032788	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032789	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032790	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032791	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032792	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032793	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032794	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434032795	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032796	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032797	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032798	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032799	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032800	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032801	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032802	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
133434032803	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
133434032804	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434032805	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
133434032806	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
133434032807	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032808	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032809	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032810	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032811	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032812	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032813	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032814	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434032815	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032816	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032817	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
133434032818	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032819	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434032820	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032821	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032822	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032823	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032824	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032825	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032826	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032827	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032828	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032829	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032830	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032831	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032832	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032833	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032834	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032835	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032836	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032837	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032838	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032839	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032840	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032841	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032842	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032843	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032844	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032845	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032846	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032847	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032848	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032849	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032850	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032851	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032852	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032853	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032854	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032855	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032856	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434032857	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032858	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032859	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032860	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032861	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032862	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032863	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032864	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032865	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032866	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032867	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434032868	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032869	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032870	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032871	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032872	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032873	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032874	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032875	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032876	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032877	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032878	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032879	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032880	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032881	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032882	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032883	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032884	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032885	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032886	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032887	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434032888	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032889	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032890	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434032891	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032892	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434032893	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
133434032894	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434032895	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434032896	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032897	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032898	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032899	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434032900	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434032901	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032902	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
133434032903	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032904	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032905	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032906	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434032907	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032908	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032909	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032910	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032911	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032912	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032913	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032914	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032915	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032916	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032917	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032918	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032919	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 EST, 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032920	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032921	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032922	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032923	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032924	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032925	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032926	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032927	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032928	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032929	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032930	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032931	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032932	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032933	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434032934	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434032935	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032936	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032937	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032938	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032939	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032940	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032941	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032942	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032943	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434032944	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032945	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032946	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032947	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032948	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032949	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434032950	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032951	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032952	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032953	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434032954	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032955	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032956	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032957	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032958	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78% coverage of the annotated genomic feature by RNAseq alignments
133434032959	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032960	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032961	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032962	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032963	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032964	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032965	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434032966	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032967	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032968	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032969	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434032970	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032971	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032972	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032973	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032974	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032975	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032976	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032977	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032978	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434032979	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434032980	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032981	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032982	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032983	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434032984	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434032985	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032986	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434032987	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032988	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434032989	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434032990	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434032991	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434032992	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434032993	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032994	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032995	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434032996	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032997	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434032998	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434032999	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033000	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
133434033001	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83% coverage of the annotated genomic feature by RNAseq alignments
133434033002	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434033003	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434033004	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434033005	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
133434033006	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
133434033007	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434033008	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434033009	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033010	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033011	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033012	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033013	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033014	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033015	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434033016	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033017	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033018	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033019	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033020	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434033021	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434033022	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434033023	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434033024	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434033025	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434033026	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033027	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033028	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033029	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434033030	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434033031	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434033032	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434033033	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434033034	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434033035	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434033036	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
133434033037	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 46% coverage of the annotated genomic feature by RNAseq alignments
133434033038	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033039	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments
133434033040	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
133434033041	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033042	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033043	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033044	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033045	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033046	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434033047	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033048	The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434033049	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434033050	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
133434033051	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033052	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033053	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033054	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033055	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033056	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434033057	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434033058	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434033059	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434033060	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434033061	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033062	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434033063	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033064	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033065	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434033066	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434033067	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins
133434033068	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033069	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033070	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033071	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033072	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033073	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
133434033074	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434033075	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434033076	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments
133434033077	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033078	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434033079	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
133434033080	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434033081	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434033082	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033083	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033084	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434033085	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434033086	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434033087	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434033088	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434033089	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434033090	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434033091	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033092	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033093	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
133434033094	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033095	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033096	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434033097	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033098	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434033099	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434033100	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434033101	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434033102	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
133434033103	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434033104	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434033105	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
133434033106	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033107	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434033108	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434033109	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033110	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033111	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434033112	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434033113	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033114	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434033115	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033116	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63% coverage of the annotated genomic feature by RNAseq alignments
133434033117	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434033118	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434033119	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434033120	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033121	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75% coverage of the annotated genomic feature by RNAseq alignments
133434033122	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033123	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
133434033124	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434033125	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434033126	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434033127	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033128	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033129	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434033130	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434033131	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434033132	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434033133	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033134	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033135	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033136	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033137	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033138	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
133434033139	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434033140	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033141	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434033142	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033143	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033144	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033145	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033146	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434033147	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033148	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434033149	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
133434033150	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434033151	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033152	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033153	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033154	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 15 samples with support for all annotated introns
133434033155	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434033156	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434033157	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
133434033158	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033159	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033160	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033161	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033162	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434033163	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033164	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
133434033165	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033166	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
133434033167	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033168	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
133434033169	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033170	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
133434033171	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434033172	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
133434033173	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434033174	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033175	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434033176	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
133434033177	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
133434033178	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033179	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434033180	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
133434033181	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434033182	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434033183	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
133434033184	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033185	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434033186	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
133434033187	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434033188	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
133434033189	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 16 samples with support for all annotated introns
133434033190	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
133434033191	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
133434033192	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434033193	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
133434033194	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
133434033195	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
133434033196	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
133434033197	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
133434033198	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
133434033199	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
133434033200	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
133434033201	Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns