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1 Introduction

This tutorial aims at introducing how to use Regulatory Sequence Analysis Tools (RSAT )
directly from the Unix shell.

RSAT is a package combining a series of specialized programs for the detection of reg-
ulatory signals in non-coding sequences. A variety of taskscan be performed: retrieval of
upstream or downstream sequences, pattern discovery, pattern matching, graphical represen-
tation of regulatory regions, sequence conversions, . . . .

A web interface has been developed for the most common tools,and is freely available for
academic users.

http://rsat.ulb.ac.be/rsat/
All the programs inRSATcan also be used directly from the Unix shell. The shell access is

less intuitive than the web interface, but it allows to perform more complex analyses, and it is
very convenient for automatizing repetitive tasks.

This tutorial was written by Jacques van Helden (Jacques.van.Helden@ulb.ac.be). Unless
otherwise specified, the programs presented here were written by Jacques van Helden.

1.1 Prerequisites

This program requires a basic knowledge of the Unix environment. Before starting you should
be familiar with the concepts of Unix shell, directory, file,path.

1.2 Creating a directory for this tutorial

During this tutorial, we wll frequently save data and resultfiles. I propose to create a dedicated
directory for these files. In the following chapters, we willassume that this directory is named
practical_rsatand is located at the root of your personnal account (everyone is of course
allowed to change the name and location of this directory).

To create the directory for the tutorials, you can simply type the following commands.

cd $HOME ## Go to your home directory
mkdir -p practical_rsat ## Create the directory for the tuto rial
cd practical_rsat ## Go to this directory
pwd ## Check the path of your directory

From now on, we will assume that all the exercises are executed from this directory.

9
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1.3 Warning

This tutorial is under construction. Some sections are still to be written, and only appear as a
title without any further text. The tutorial will be progressively completed. We provided it as
it is.
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1.4 Configuring RSAT

In order to use the command-line version ofRSAT , you first need an account on a Unix
machine whereRSAThas been installed, and you should know the directory where the tools
have been installed (if you don’t know, ask assistance to your system administrator).

In the following instruction, we will assume thatRSAT is installed in the directory
/home/fred/rsat .
Note: in all subsequent instructions, this path has to be replacedby the actual path where

RSAThas been installed on your computer.

1.4.1 Adding RSAT to your path

Before starting to use the tools, you need to define an environment variable (RSAT), and to
add some directories to your path.

For the following instructions, we will denote as

RSAT_PARENT_PATH

the path of the parent folder in which theRSATsuite has been downloaded.
For example, if thersat folder has been installed in your home directory (it is thus found at

/home/fred/rsat), you should replace

RSAT_PARENT_PATH

by /home/fredin all the following instructions.

1. Identify yourSHELL.

The way to execute the following instructions depends on your “shell” environment. If
you don’t know which is your default shell, type

echo $SHELL

The answer should be something like

/sbin/bash

or

/bin/tcsh

2. Declare theRSATenvironment variables.

We will define configuration parameters necessary forRSAT . This includes an environ-
ment variable namedRSAT. We will then add the path of theRSAT perl scripts, python
scripts and binaries to your path.

• If your shell is bash, you should copy the following lines in a file named.bash_profile
at the root of your account (depending on the Unix distribution, the bash custom
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parameters may be declered in a file named.bash_profileor) .bashrc, in case of
doubt ask your system administrator).

If you dispose of admin rights, you may decide to store this configuration ina
file that will be laoded for all users of the server (e.g./etc/profile.d/rsat.shor
/etc/bashrc, depending on the operating system).

Note: replace [PARENT_PATH] by the full path of the directory in which the rsat
folder has been created.

################################################################
## Configuration for Regulatory Sequence Analysis Tools (RSAT)
export RSAT=[PARENT_PATH]/rsat
export PATH=${RSAT}/bin:${PATH}
export PATH=${RSAT}/perl-scripts:${PATH}
export PATH=${RSAT}/python-scripts:${PATH}
if [ ${CLASSPATH} ]; then

export CLASSPATH=${CLASSPATH}:${RSAT}/java/lib/NeAT_ javatools.jar
else

export CLASSPATH=.:${RSAT}/java/lib/NeAT_javatools.j ar
fi

## Pass through ssh for CVS (required to install Ensembl API)
export CVS_RSH=ssh

• If your default shell istcsh or csh, copy the following lines in a file named.chsrc
that should be found at root of your account.

Note: replace [PARENT_PATH] by the full path of the directory in which the rsat
folder has been created.

################################################################
## Configuration for Regulatory Sequence Analysis Tools (RSAT)
setenv RSAT [PARENT_PATH]/rsat
set path=($RSAT/bin $path)
set path=($RSAT/perl-scripts $path)
set path=($RSAT/python-scripts $path)
if [ ${CLASSPATH} ]; then

setenv CLASSPATH ${CLASSPATH}:${RSAT}/java/lib/NeAT_javatoo ls.jar
else

setenv CLASSPATH .:${RSAT}/java/lib/NeAT_javatools.jar
fi

## Pass through ssh for CVS (required to install Ensembl API)
setenv CVS_RSH=ssh

• If you are using a different shell than bash, csh or tcsh, thespecification of envi-
ronment variables might differ from the syntax above. In case of doubt, ask your
system administrator how to configure your environment variables and your path.

3. In order for the variables to be taken in consideration, you need to log out and open a
new terminal session. To check that the variables are correctly defined, type.
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echo $RSAT

In the example above, this command should return

/ home/fred/rsat
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2 Getting help

The first step before using any program is to read the manual. All programs in theRSATpackage
come with an on-line help, which is obtained by typing the name of the program followed by
the option-h. For example, to get a detailed description of the functionality and options for
the programretrieve-seq , type

retrieve-seq -h

The detailed help is specially convenient before using the program for the first time. A
complementary functionality is offered by the option-help , which prints a short list of
options. Try:

retrieve-seq -help

which is convenient to remind the precise formulation of arguments for a given program.
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3 Retrieving sequences

The programretrieve-seq allows you to retrieve sequences from a genome (provided this
genome is supported on your machine). In particular (and by default), this program extracts
the non-coding sequences located upstream the start codon of the query genes. The reason
for selecting upstream sequences (rather than coding) is that regulatory elements are generally
found upstream of the coding regions, at least in microbial organisms.

3.1 Retrieving a single upstream sequence

First trial: we will extract the upstream sequence for a single gene. Try:

retrieve-seq -type upstream -org Escherichia_coli_K_12_ substr__MG1655_uid57779 \
-q metA -from -200 -to -1

This command retrieves a 200 bp upstream sequence for the gene metA of the bacteria
Escherichia coli K12.

By default, coordinates are calculated from the start codon.Ideally, we would prefer to
retrieve sequences upstream of the Transcription Start Site (TSS), since this is the place where
the RNA polymerase starts to transcribe the gene. Unfortunately, the precise location of the
TSS is unknown for most genes, in most sequecned genome. For this reason, the default
reference is the start codon rather than the TSS.

Note that for some organisms (e.g.Homo sapiens), genome annotations include mRNA
boundaries. In this case, the option-feattype mRNAallows you to specify that the reference
point is the start of the mRNA (thus the TSS) rather than the start codon.

Whichever reference point you decide to use, negative coordinates indicate sequences up-
stream to this reference point, and positive coordinates downstream sequences.

With the default parameters,

- the reference point is the start codon;

- position−1 corresponds to the first residue upstream of the coding sequence;

- position 0 is the first letter from the start codon (the A fromATG);

- positive coordinates indicate the coding sequence (downstream from the start codon).

To better understand the system of coordinates, try to locate the start codon in the sequence
obtained with the following commands.

retrieve-seq -type upstream -org Escherichia_coli_K_12_ substr__MG1655_uid57779 \
-q metA -from -5 -to 6

15



3.2 Combining upstream and coding sequence

ForE.coli genes, regulatory signals sometimes overlap the 5’ side of the coding sequence. By
doing so, they exert a repression effect by preventing RNA-polymerase from binding DNA.
The commandretrieve-seqallows you to extract a sequence that overlaps the start codon, to
combine an upstream and a coding segment.

retrieve-seq -type upstream -org Escherichia_coli_K_12_ substr__MG1655_uid57779 \
-q metA -from -200 -to 49

3.3 Retrieving a few upstream sequences

The option-q (query gene) can be used iteratively in a command to retrievesequences for
several genes.

retrieve-seq -org Escherichia_coli_K_12_substr__MG165 5_uid57779 \
-from -200 -to 49 -q metA -q metB -q metC

3.4 Retrieving a larger list of upstream sequences

If you have to retrieve a large number of sequences, it might become cumbersome to type each
gene name on the command-line. A list of gene names can be provided in a text file, each gene
name coming as the first word of a new line.

As an example, we willuse the command

gene-info

to collect all genes whose matches the prefixPHOfollowed by one or several numbers (this
will return a list of genes involved in phosphate metabolism).

gene-info -org Saccharomyces_cerevisiae -q 'PHO\d+' -o PH O_genes.txt

We can check the content of your file by typing

cat PHO_genes.txt

This file can now be used as input to indicate the list of query genes for

retrieve-seq

, with the option-i.

retrieve-seq -type upstream -i PHO_genes.txt \
-org Saccharomyces_cerevisiae \
-from -800 -to -1

The option-o allows you to indicate the name of a file where the sequence will be stored.

retrieve-seq -type upstream -i PHO_genes.txt \
-org Saccharomyces_cerevisiae \
-from -800 -to -1 -label name \
-o PHO_up800.fasta

16



Check the sequence file:

more PHO_up800.fasta

3.5 Preventing the inclusion of upstream ORFs

With the command above, we retrieved sequences covering precisely 200 bp upstream the
start codon of the selected genes. Intergenic regions are sometimes shorter than this size. In
particular, in bacteria, many genes are organized in operons, and the intergenic distance is
very short (typically between 0 and 50 bp). If your gene selection contains many intra-operon
genes, the sequences will be mainly composed of coding sequences (more precisely ORF,
open reading frame), which will bias subsequent analyses.

The option-noorf of retrieve-seqindicates that, if the upstream gene is closer than the
specified limit, the sequence should be clipped in order to return only intergenic regions.

As an example, we will store the list of histidin genes in a fileand compare the results
obtained with and without the option-noorf.

Create a text file namedhis_genes.txtwith the following genes.

hisL
hisG
hisD
hisC
hisH
hisA
hisF
hisI
hisP
hisM
hisQ
hisJ
hisS

The default behaviour will return 200bp for each gene.

retrieve-seq -type upstream -org Escherichia_coli_K_12_ substr__MG1655_uid57779 \
-i his_genes.txt -from -200 -to -1

With the option-noorf, sequences are clipped depending on the position of the closest up-
stream neighbour.

retrieve-seq -type upstream -org Escherichia_coli_K_12_ substr__MG1655_uid57779 \
-i his_genes.txt -from -200 -to -1 -noorf \
-o his_up200_noorf.fasta

more his_up200_noorf.fasta

You can measure the length of the resulting sequences with the programsequence-lengths.

sequence-lengths -i his_up200_noorf.fasta
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Notice that some genes have very short upstream sequences (no more than a few bp, or even
0bp). These are the internal genes of thehis operon.

We will now apply the same option to the list of PHO genes entered above, in order to
obtaine the corresponding non-coding upstream sequences,with a size up to 800bp.

retrieve-seq -type upstream -i PHO_genes.txt \
-org Saccharomyces_cerevisiae \
-from -800 -to -1 -noorf -label name \
-o PHO_up800-noorf.fasta

Check the sequence file:

more PHO_up800-noorf.fasta

We can now use the command

sequence-lengths

to compare the sequence sizes of the filesPHO_up800.fasta, andPHO_up800-noorf.fasta,
respectively.

sequence-lengths -i PHO_up800.fasta

sequence-lengths -i PHO_up800-noorf.fasta

3.6 Getting information about genes

RSAT include several utilities to obtain information about a setof genes, we will illustrate
some basic features.

3.6.1 Getting gene location, names and description
In the previous section, we created a text file with the names of a set of genes related to
phosphate metabolism. The command

gene-info

returns the complete information concerning a set of genes.By default, the first word of each
row of the input file is considered as a query.

gene-info -i PHO_genes.txt -org Saccharomyces_cerevisia e

3.6.2 Selecting gene by name or description

Another common need is to search all the names whose name or description matches some
string. For example, let us assume that we want to ollect all the genes whose name indicates
a role in the methionine metabolism, in the yeastSaccharomyces cerevisiae. The program
gene-infoallows us to specify this type of query. according to the naming convention in the
yeast community, gene names start with three letters indicating the function (e.g. PHO for
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phosphate, MET for methionine), wollowed by a number. We canask the program to return
all the gene names having the string “MET” in their names.

In this example, we will enter the query string with the option -q on the command line,
rather than in a file.

gene-info -q 'MET' -org Saccharomyces_cerevisiae

We could also refine the query by taking advantage of our knowledge of the yeast gene
nomenclature, and selecting the genes whose name starts with the prefix “MET”, followed by
one or several numbers.

gene-info -q '^MET\d+' -org Saccharomyces_cerevisiae

The query is formulatd as aregular expression, where\d indicates a number, and the symbol
+ is a multiplier, so\d+, indicates that we accept a succession of one or more numbersafter
the string “MET”. The character ˆ indicates that the string MET should be at the start of the
name (thus, there can be no letter before MET).

We can now store this list of genes in a separate file, and retrieve the coresponding upstream
sequences.

gene-info -q '^MET\d+' -org Saccharomyces_cerevisiae -o M ET_genes.txt

retrieve-seq -type upstream -i MET_genes.txt \
-org Saccharomyces_cerevisiae \
-from -800 -to -1 -noorf -label name \
-o MET_up800-noorf.fasta

3.6.3 Selecting genes by their description

By default, the programgene-infomatches a query string against the list of gene names for
the selected organism. The option-descrextends the search to the gene descriptions. For
instance, we could search all the genes having the word “methionine” in their description.

gene-info -descr -q methionine -org Saccharomyces_cerevi siae

3.6.4 Adding selected fields to a list of gene

As we saw in the previous section, the programgene-info takes as input a list of gene names
or identifiers, and return the complete description of each gene.

In some cases, one needs only a part of this information (e.g.the common name, or the
descripion), in order to to add some columns to a pre-existing tab-delimited file where each
row represents one gene. For example, imagine that you have afile containing expression
profiles for 6,000 yeast genes, measured by microarray experiments under 200 conditions.
The file contains 201 columns: the first column indicates the ID of each gene, and the 200
next column give expression values measured in the 200 microarrays. In such case, you would
typically useadd-gene-info to add a few columns after each profile, in order to indicate the
common name and the description of each gene.
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The programadd-gene-infoallows add columns to an input file, with user-selected fieldsof
information about the genes. For example, the options belowwill add the gene identifier and
the list of synonym to each row of our PHO gene list.

add-gene-info -i PHO_genes.txt -org Saccharomyces_cerev isiae \
-info id,names

If the input file contains additional columns (e.g. expression profiles), these will be pre-
served in the output, and the requested information columnswill be added at the end of each
row.

You can check the list of fields supported byadd-gene-infoby consulting the help message.

add-gene-info -help

3.7 Retrieving sequences of a random selection of
genes

It is also sometimes interesting to select a set of random genes, which canbe used as negative
control or some analyses. This is exactly the purporse of theprogramrandom-genes. We
will perform a random selection of 20 yeast genes, and retrieve their upstream sequences.
This selection will also be used in the next chapters.

random-genes -org Saccharomyces_cerevisiae -n 20 -o RAND_ genes.txt

retrieve-seq -type upstream -i RAND_genes.txt \
-org Saccharomyces_cerevisiae \
-from -800 -to -1 -noorf -label name \
-o RAND_up800-noorf.fasta

3.8 Retrieving all upstream sequences

For genome-scale analyses, it is convenient to retrieve upstream sequences for all the genes of
a given genome, without having to specify the complete list of names. For this, simply use the
option-all.

As an illustration, we will use

retrieve-seq

to retrieve all the start codons fromEscherichia coli. As we saw before, negative coordinates
specify upstream positions, 0 being the first base of the coding sequence. Thus, by specifying
positions 0 to 2, we will extract the three first coding bases,i.e. the start codon.

retrieve-seq -type upstream -org Escherichia_coli_K_12_ substr__MG1655_uid57779 \
-from 0 -to 2 \
-all -format wc -nocomments -label id,name \
-o Escherichia_coli_K_12_substr__MG1655_uid57779_sta rt_codons.wc
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Check the result:

more Escherichia_coli_K_12_substr__MG1655_uid57779_s tart_codons.wc

3.9 Retrieving downstream sequences

retrieve-seqcan also be used to retrieve downstream sequences. In this case, the origin (po-
sition 0) is the third base of the stop codon, positive coordinates indicate downstream (3’)
location, and negative coordinates locations upstream (5’) from the stop codon (i.e. coding
sequences).

For example, the following command will retrieve 200pb downstream sequences for a few
yeast genes. The first nucleotides of the retrieved sequences are those immediately after the
stop codon.

retrieve-seq -type downstream -org Saccharomyces_cerevi siae \
-from 1 -to 200 -label id,name -q PHO5 -q MET4

Since with the option-type downstream, the coordinates smaller than 1 indicate positions
upstream of the stop codon, we can useretrieve-seq to extract the stop codons for all the
genes ofEscherichia coli.

retrieve-seq -type downstream -org Escherichia_coli_K_1 2_substr__MG1655_uid57779 \
-from -2 -to 0 \
-all -format wc -nocomments -label id,name \
-o Escherichia_coli_K_12_substr__MG1655_uid57779_sto p_codons.wc

3.10 Inferring operons

In Bacteria, genes are organized in operon, which means that several genes are transcribed in
a single transcription unit. The transcription of a whole operon is driven by a single promoter,
located upstream of the so-calledleader gene.

Let us assume that we dispose of a set of bacterial genes for which we want to predict
cis-acting elements (e.g. co-expressed genes in a microarray experiment). A good fraction
of these genes might be located inside operons. For these, the putative regulatory elements
should be searched in the promoter of the operon leader gene,rather than in the upstream
sequence of the gene itself.

The programinfer-operons allows to infer the operons and return the corresponding leader
genes for a set of input genes. The approach is inspired by theSalgado-Hagelsieb method,
which consists in predicting, for each upstream region, if it is within an operon (WO) or t a
transcription unit border (TUB). This prediction is based ontwo rules:

1. Orientation rule If the intergenic region is flanked by two genes located on different
strands, it is a TUB.
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2. [Distance rule If the intergenic region is flanked twotandemgenes (adjacent genes
transcribed in the same direction), it is classified as WO if the intergenic distance is
lower than some threshold (by default, 55bp), and as TUB otherwise.

The default distance threshold was chosen to obtain a good balance betweensensitivity(Sn,
fraction of annotated WO regions which are correctly predicted) andpositive predictive value
(PPV, fraction of predicted WO region which indeed correspond toannotations).

The option-dist allows to specify a custom distance threshold. By increasingthe threshold,
the number of regions predicted as WO increases, at the expense of those predicted as WO.
This will thus increase the Sn and decrease PPV.

Theaccuracymeasures the balance between Sn and PPV by taking their arithmetic average.
With the default value, one can expect 78% of accuracy (Reki’sjanky and Jacques van Helden,
unpublished results).

We will illustrate the use ofinfer-operons with a few examples.

3.10.1 Inferring operon from a list of query genes

With the following command, we infer the operon for a set of input genes.

infer-operons -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 -q hisD -q mhpR \
-q mhpA -q mhpD

Note that the prediction is incorrect for the genehisD: the program predicthisG as operon
leader, whereas the well known leader of thehis operon ishisL. This is due to the fact that
the intergenic distance betweenhisL andhisG is 145bp, which exceeds the default distance
threshold (55bp).

One option would be to increase the distance threshold to 150bp.

infer-operons -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 -q hisD -q mhpR \
-q mhpA -q mhpD -dist 150

However, we should be very careful with this option, since ithas a strong consequence on
all the other operon inferenes in the same genome. Since a good fraction of promoters of
Escherichia coliare shorted than 150bp, by increasing the distance threshold to 150, we will
undully consider these promoters as WO.

3.10.2 Selecting custom return fields

The option-returnallows to specify custom return fields.

infer-operons -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 -q hisD -q lacI -q
-return q_info,up_info,leader,trailer,operon

Note that the famouslac operon contains three genes:lacZ, lacY andlacA, but the inferred
operon only returns the two first genes because the distance betweenlacY andlacA is 65bp.
This can be checked with the return fielddown_info.

infer-operons -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 -q lacZ -q lacY \
-return q_info,up_info,down_info,operon
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3.10.3 Operons with non-CDS genes

Note that operons can contain non-coding genes. For example, the metT operon contains a
series of tRNA genes for methionine, leucine and glutamina, respectively.

infer-operons -org Escherichia_coli_K_12_substr__MG16 55_uid57779 -q glnV -q metU -q ileV
-return q_info,up_info,operon

3.10.4 Inferring all operons for a given organism

The option-all allows to infer operons for all the genes of an organism.

infer-operons -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 -all \
-return q_info,up_info,leader,operon

3.10.5 Retrieving operon leader genes and inferred operon
promoters

As explained above, a common usage of operon inference is to predict a list of leader genes
from a set of query genes, in order to retrieve the corresponding promoter sequences. For this,
we will use the option-return to obtain the leader gene in the first column of the result table.

infer-operons -org Escherichia_coli_K_12_substr__MG16 55_uid57779 -return leader,q_info,up_info
-q lacI -q lacZ -q lacY -q mhpD -q mhpF

The first column now indicates the inferred leader genes rather than tne query genes, and
that this column contains some redundancy: the same leader gene appears multiple times. This
comes from the fact that several of our query genes were part of the same operon (e.g.:lacZ
and lacY).

To avoid including twice their leader, we use the unix command sort -u (unique).

infer-operons -org Escherichia_coli_K_12_substr__MG16 55_uid57779 -return leader,q_info,up_info
-q lacI -q lacZ -q lacY -q mhpD -q mhpF \
| cut -f 1 \
| sort -u

We can now use the resulting non-redundant list of operon leaders as input for retrieve-seq.

infer-operons -org Escherichia_coli_K_12_substr__MG16 55_uid57779 -return leader,q_info,up_info
-q lacI -q lacZ -q lacY -q mhpD -q mhpF \
| cut -f 1 \
| sort -u \
| retrieve-seq -org Escherichia_coli_K_12_substr__MG16 55_uid57779 -noorf

3.10.6 Collecting all upstream regions from the query gene up to
the leader gene

TO BE IMPLEMENTED
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3.10.7 Automatic inference

TO BE IMPLEMENTED

3.11 Purging sequences

TO BE WRITTEN
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4 Pattern discovery

In a pattern discovery problem, you start from a set of functionally related sequences (e.g. up-
stream sequences for a set of co-regulated genes) and you tryto extract motifs (e.g. regulatory
elements) that are characteristic of these sequences.

Several approaches exist, either string-based or matrix-based. String-based pattern dis-
covery is based on an analysis of the number of occurrences of all possibles words (oligo-
analysis), or spaced pairs (dyad-analysis). The methods formatrix-based pattern discovery
rely on the utlisation of some machine-learning method (e.g. greedy algorithm, expectation-
maxiisation, gibbs sampling, ...) in order to optimise of some scoring function (log-likelihood,
information,...) which is likely to return significant motifs.

In this chapter we will mainly focus on string-based approaches, and illustrate some of their
advantages. A further chapter will be dedicated to matrix-based pattern discovery.

For microbial cis-acting elements, string-based approaches give excellent results. The main
advantages of these methods:

+ Simple to use

+ Deterministic (if you run it repeatedly, you always get thesame result), in contrast with
stochastic optimization methods.

+ Exhaustive : each word or space pair is tested independently. Consequently, if a set of
sequences contains several exceptional motifs, all of themcan be detected in a single
run.

+ The tests of significances can be performed on both tails of the theoretical distribution,
in order to detect either over-represented, or under-represented patterns.

+ Fast.

+ Able to return a negative answer: if no motif is significant,the programs return no motif
at all. This is particularly important to reduce the rate of false positive.

An obvious advantage of matrix-based approach is that they provide a more refined de-
scription of motifs presenting a high degree of degeneracy.However, a general problem of
matrix-based approaches is that it is impossible to analyzeall possible position-weight matri-
ces, and thus one has to use heuristics. There is thus a risk tomiss the global optimum because
the program is attracted to local maxima. Another problem isthat there are more parameters
to select (typically, matrix width and expected number of occurrences of the motif), and their
choice drastically affects the quality of the result.
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Basically, I would tend to prefer string-based approaches for any problem of pattern discov-
ery. On the contrary, matrix-based approaches are much moresensitive for pattern matching
problems (see below). My preference is thus to combine string-based pattern discovery and
matrix-based pattern matching.

But I am obviously biased because I developed string-based approaches. An important
factor in the success obtained with a program is to understand precisely its functioning. I thus
think that each user should test different programs, compare them and select the one that best
suits his/her needs.

4.1 Requirements

This part of the tutorial assumes that you already performedthe tutorial about sequence re-
trieval (above), and that you have the result files in the current directory. Check with the
command:

cd ${HOME}/practical_rsat
ls -1

You should see the following file list:

Escherichia_coli_K_12_substr__MG1655_uid57779_start _codons.wc
Escherichia_coli_K_12_substr__MG1655_uid57779_stop_ codons.wc
MET_genes.txt
MET_up800-noorf.fasta
PHO_genes.txt
PHO_up800-noorf.fasta
PHO_up800.fasta
RAND_genes.txt
RAND_up800-noorf.fasta
his.genes.txt
his.up200.noorf.fasta
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5 String-based pattern discovery

In a pattern discovery problem, you start from a set of functionally related sequences (e.g. up-
stream sequences for a set of co-regulated genes) and you tryto extract motifs (e.g. regulatory
elements) that are characteristic of these sequences.

Several approaches exist, either string-based or matrix-based. String-based pattern dis-
covery is based on an analysis of the number of occurrences of all possibles words (oligo-
analysis), or spaced pairs (dyad-analysis). The methods formatrix-based pattern discovery
rely on the utlisation of some machine-learning method (e.g. greedy algorithm, expectation-
maxiisation, gibbs sampling, ...) in order to optimise of some scoring function (log-likelihood,
information,...) which is likely to return significant motifs.

In this chapter we will mainly focus on string-based approaches, and illustrate some of their
advantages. A further chapter will be dedicated to matrix-based pattern discovery.

For microbial cis-acting elements, string-based approaches give excellent results. The main
advantages of these methods:

+ Simple to use

+ Deterministic (if you run it repeatedly, you always get thesame result), in contrast with
stochastic optimization methods.

+ Exhaustive : each word or space pair is tested independently. Consequently, if a set of
sequences contains several exceptional motifs, all of themcan be detected in a single
run.

+ The tests of significances can be performed on both tails of the theoretical distribution,
in order to detect either over-represented, or under-represented patterns.

+ Fast.

+ Able to return a negative answer: if no motif is significant,the programs return no motif
at all. This is particularly important to reduce the rate of false positive.

An obvious advantage of matrix-based approach is that they provide a more refined de-
scription of motifs presenting a high degree of degeneracy.However, a general problem of
matrix-based approaches is that it is impossible to analyzeall possible position-weight matri-
ces, and thus one has to use heuristics. There is thus a risk tomiss the global optimum because
the program is attracted to local maxima. Another problem isthat there are more parameters
to select (typically, matrix width and expected number of occurrences of the motif), and their
choice drastically affects the quality of the result.
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Basically, I would tend to prefer string-based approaches for any problem of pattern discov-
ery. On the contrary, matrix-based approaches are much moresensitive for pattern matching
problems (see below). My preference is thus to combine string-based pattern discovery and
matrix-based pattern matching.

But I am obviously biased because I developed string-based approaches. An important
factor in the success obtained with a program is to understand precisely its functioning. I thus
think that each user should test different programs, compare them and select the one that best
suits his/her needs.

5.1 Requirements

This part of the tutorial assumes that you already performedthe tutorial about sequence re-
trieval (above), and that you have the result files in the current directory. Check with the
command:

cd ${HOME}/practical_rsat
ls -1

You should see the following file list:

Escherichia_coli_K_12_substr__MG1655_uid57779_start _codons.wc
Escherichia_coli_K_12_substr__MG1655_uid57779_stop_ codons.wc
MET_genes.txt
MET_up800-noorf.fasta
PHO_genes.txt
PHO_up800-noorf.fasta
PHO_up800.fasta
RAND_genes.txt
RAND_up800-noorf.fasta
his.genes.txt
his.up200.noorf.fasta

5.2 oligo-analysis

The programoligo-analysis is the simplest pattern discovery program. It counts the number
of occurrences of all oligonucleotides (words) of a given length (typically 6), and calculates
the statistical significance of each word by comparing its observed and expected occurrences.
The program returns words with a significant level of over-representation.

Despite its simplicity, this program generally returns good results for groups of co-regulated
genes in microbes.

For a first trial, we will simply use the program to count word occurrences. The application
will be to check the start and stop codons retrieved above. Wewill then useoligo-analysisin a
pattern discovery process, to detect over-represented words from the set of upstream sequences
retrieved above (the PHO family). In a first time, we will use the appropriate parameters,
which have been optimized for pattern discovery in yeast upstream sequences (van Helden et
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al., 1998). We will then use the sub-optimal settings to illustrate the fact that the success of
word-based pattern-discovery crucially depends on a rigorous statistical approach (choice of
the background model and of the scoring function).

5.2.1 Counting word occurrences and frequencies

Try the following command:

oligo-analysis -v 1 -i Escherichia_coli_K_12_substr__MG 1655_uid57779_start_codons.wc \
-format wc -l 3 -1str

Call the on-line option description to understand the meaning of the options you used:

oligo-analysis -help

Or, to obtain more details:

oligo-analysis -h

You can also ask some more information by speifying a verbosity of 1 (option-v 1), and
store the result in a file:

oligo-analysis -v 1 -i Escherichia_coli_K_12_substr__MG 1655_uid57779_start_codons.wc \
-format wc -l 3 -1str -return occ,freq \
-o Escherichia_coli_K_12_substr__MG1655_uid57779_sta rt_codon_frequencies.tab

Read the result file:

more Escherichia_coli_K_12_substr__MG1655_uid57779_s tart_codon_frequencies.tab

Note the effect of the verbose option (-v 1). You receive information about sequence length,
number of possible oligonucleotides, the content of the output columns, ...

Exercise 5.1Follow the same procedure as above to check the frequencies of stop codons in
the genomes ofEscherichia coli K12, andSaccharomyces cerevisia, respectively.

5.2.2 Pattern discovery in yeast upstream regions

Try the following command:

oligo-analysis -i PHO_up800-noorf.fasta -format fasta \
-v 1 -l 6 -2str -lth occ_sig 0 -noov \
-return occ,proba,rank -sort \
-bg upstream-noorf -org Saccharomyces_cerevisiae \
-o PHO_up800-noorf_6nt-2str-noov_ncf_sig0

Note that the return fields (“occ”, “proba”, and “rank”) are separated by a commawithout
space. Call the on-line help to understand the meaning of the parameters.
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oligo-analysis -h

For this analysis, the expected frequency of each word was estimate on the basis of pre-
calibrated frequency tables. These tables have been previously calculated (with oligo-analysis)
by counting hexanucleotide frequencies in the whole set of yeast upstream regions (-bg up-
stream). Our experience is that these frequencies are the optimal estimator for discovering
regulatory elements in upstream sequences of co-regulatedgenes.

Analyze the result file:

more PHO_up800-noorf_6nt-2str-noov_ncf_sig0

; Counted on both strands
; grouped by pairs of reverse complements
; Background model upstream
; Organism Saccharomyces_cerevisiae
; Method Frequency file
...
; Nb of sequences 19
; Sum of sequence lengths 11352
; discarded residues 0 (other letters than ACGT)
; discarded occurrences 0 (contain discarded residues)
; nb possible positions 11257
; total oligo occurrences 11257
[...]
; nb possible oligomers 2080
; oligomers tested for significance 2080
[...]
; column headers
; 1 seq oligomer sequence
; 2 identifier oligomer identifier
; 3 exp_freq expected relative frequency
; 4 occ observed occurrences
; 5 exp_occ expected occurrences
; 6 occ_P occurrence probability (binomial)
; 7 occ_E E-value for occurrences (binomial)
; 8 occ_sig occurrence significance (binomial)
; 9 rank rank
; 10 ovl_occ number of overlapping occurrences (discarded f rom the count)
; 11 forbocc forbidden positions (to avoid self-overlap)
; 12 test
;seq identifier exp_freq occ exp_occ occ_P occ_E occ_sig ra nk ovl_occ forbocc
acgtgc acgtgc|gcacgt 0.0002182431087 16 2.46 8.4e-09 1.7e -05 4.76 1 2 76
cccacg cccacg|cgtggg 0.0001528559297 11 1.72 2e-06 4.2e-0 3 2.37 2 0 55
acgtgg acgtgg|ccacgt 0.0002257465554 13 2.54 2.8e-06 5.9e -03 2.23 3 1 65
cacgtg cacgtg|cacgtg 0.0001299168211 10 1.46 3.3e-06 6.8e -03 2.17 4 0 100
cgcacg cgcacg|cgtgcg 0.0001322750472 10 1.49 3.8e-06 8.0e -03 2.10 5 0 50
cgtata cgtata|tatacg 0.0005113063008 17 5.76 0.00011 2.2e -01 0.65 6 1 85
agagat agagat|atctct 0.0006913890231 19 7.78 0.00047 9.8e -01 0.01 7 0 95

A few questions:
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1. How many hexanucleotides can be formed with the 4-letter alphabet A,T,G,C ?

2. How many possible oligonucleotides were analysed here ? Is it the number you would
expect ? Why ?

3. How many patterns have been selected as significant ?

4. By simple visual inspection, can you identify some sequence similarities between the
selected patterns?

5.2.3 Answers

1. The number of possible hexanucleotides is 46 = 4,096.

2. The result file however reports 2,080 possible oligonucleotides. This is due to the fact
that the analysis was performed on both strands. Each oligonucleotide is thus regrouped
with its reverse complement. The number of pairs is hovever larger than 4096/2, be-
cause there are 43 = 64 motifs (e.g. CACGTG) which are identical to their reverse
complements. The number of motifs distinct from their reverse complement is thus
4,069− 64= 4,032, and they are regrouped into 4,032/2 = 2,016 pairs. The total
number of motifs is thusT = 64+2016= 2080.

3. Among the 2080 tested oligonucleotides (+reverse complement), no more than 7 were
selected as significantly over-represented.

4. Some pairs of words are mutually overlapping (e.g.ACGTGcandcACGTG).

We can now interpret these results in terms of statistics.

exp_ f req The expected frequency of an oligonucleotide is the probability to find it by chance
at any position of the sequences analyzed. The expected frequencies are estimated on
the basis of the background model.

The programoligo-analysis uses the binomial statistics to compare the observed and ex-
pected number of occurrences, an to calculate the over-representation statistics.

Pval P-value: probability for a given oligonucleotide to be a false positive, i.e. to be consid-
ered as over-represented whereas it is not.

Eval= T ·Pval number of false positive patterns expected by chance given the P-value of the
considered pattern.

occsig =−log10(Eval) significance of the oligonucleotide occurrences. This is a simple
minus-log conversion of th E-value.
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5.2.4 Assembling the patterns

A separate program,pattern-assembly, allows to assemble a list of patterns, in order to group
those that overlap mutually. Try:

pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_ncf _sig0 \
-v 1 -subst 1 -2str -o PHO_up800-noorf_6nt-2str-noov_ncf_ sig0.asmb

Read the on-line help to have a look at the assembly parameters.

pattern-assembly -h

Let us have a look at the assembled motifs.

more PHO_up800-noorf_6nt-2str-noov_ncf_sig0.asmb

Should give something llike this (the precise result might be slightly different depending on
the version of the genome).

; pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_nc f_sig0 -v 1 -subst 1 -2str -o PHO_up800-noorf_6nt-2str-noo v_ncf_sig0.asmb
; Input file PHO_up800-noorf_6nt-2str-noov_ncf_sig0
; Output file PHO_up800-noorf_6nt-2str-noov_ncf_sig0.a smb
; Input score column 8
; Output score column 0
; two strand assembly
; max flanking bases 1
; max substitutions 1
; max assembly size 50
; max number of patterns 100
; number of input patterns 7
;

;assembly # 1 seed: acgtgc 9 words length
; alignt rev_cpl score
cccacg.... ....cgtggg 2.37
cgcacg.... ....cgtgcg 2.10
.gcacgt... ...acgtgc. 4.76
.ccacgt... ...acgtgg. 2.23
..cacgtg.. ..cacgtg.. 2.17
...acgtgc. .gcacgt... 4.76
...acgtgg. .ccacgt... 2.23
....cgtggg cccacg.... 2.37
....cgtgcg cgcacg.... 2.10
cgcacgtgcg cgcacgtgcg 4.76 best consensus

; Isolated patterns: 2
;alignt rev_cpl score
cgtata tatacg 0.65 isol
agagat atctct 0.01 isol
;Job started 26/10/06 09:58:21 CDT
;Job done 26/10/06 09:58:21 CDT

The result of the assembly shows us that several of the significant hexanucleotides actually
reflect various fragments of a same motif. We also see that, despite the fact thatoligo-analysis
only analyzed the 4-letters DNA alphabet, the assembly indicates some degeneracy in the mo-
tif, revealed by the presence of alternative letters at the same position. For instance, in the
penultimate position of the assembly, we can observe eitherC or G. In addition, the scores
besides each oligonucleotide indicate us that these alternative letters can be more or less sig-
nificantly over-represented in our sequence set. In summary, the result ofpattern-assemblyis
the real key to the interpretation ofoligo-analysis: the discovered motifs are not each separate
oligo-analysis, but the assemblies that can be formed out ofthem.

Thebest consensusindicates, for each position of the alignment, the letter corresponding to
the oligonucleotide with the highest significance. This consensus should be considered with
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caution, because its complete sequence is built from the collection of various oligonucleotides,
and might not correspond to any real site in the input sequences. Also, this “best consensus”
is generally too stringent to perform pattern matching (seenext chapters), and we usually
prefer to search all the oligonucleotides separately, and analyze their feature map to identify
the putative cis-acting elements.

Exercise 5.2Use the same procedure as above to discover over-represented hexanucleotides
in the upstream sequences of the MET genes obtained in the chapter on sequence retrieval.
Analyze the results ofoligo-analysisandpattern-assembly.

Exercise 5.3Use the same procedure as above to discover over-represented hexanucleotides
in the upstream sequences of the RAND genes (randoms electionof genes) obtained in the
chapter on sequence retrieval. Analyze the results ofoligo-analysisandpattern-assembly.

5.2.5 Alternative background models

One of the most important parameters for the detectin of significant motifs is the choice of an
appropriate background model.

This chapter aims at emphasizing how crucial is the choice ofappropriate statistical param-
eters. We saw above that a background model calibrated on allthe yeast upstream sequences
gives good results with the PHO family: despite the simplicity of the algorithm (counting
non-degenerate hexanucleotide occurrences), we were ableto extract a description of the reg-
ulatory motif over a larger width than 6 (by pattern assembly), and we got some description
of the degeneracy (the high and low affinity sites).

We will now intentionally try other parameter settings and see how they affect the quality
of the results.

Equiprobable oligonucleotides

Let us try the simplest approach, where each word is considered equiprobable. For this, we
simply suppress the options-bg upstream -org Saccharomyces_cerevisiaefom the above com-
mands. We also omit to specify the output file, so results willimmediately appear on the
screen.

oligo-analysis -v 1 -i PHO_up800-noorf.fasta -format fast a \
-l 6 -2str -return occ,proba,rank -lth occ_sig 0 -sort -bg eq ui

You can combineoligo-analysisandpattern-assemblyin a single command, by using the
pipe character as below.

oligo-analysis -i PHO_up800-noorf.fasta -format fasta -v 1 \
-l 6 -2str -return occ,proba -lth occ_sig 0 -sort \
| pattern-assembly -2str -subst 1 -v 1

On unix systems, the “pipe” character is used to concatenatecommands, i.e. the output of
the first command (in this caseoligo-analysis) is not printed to the screen, but is sent as input
for the second command (in this casepattern-assembly).

Note that
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• The number of selected motifs is higher than in the previoustrial. with the 2006 version
of the sequences, I obtain 92 patterns, instead of the 7 obtained with the background
model calibrated on yeast upstream sequences.

• The most significant motifs are not related to the Pho4p binding sites. All these false
positives are AT-rich motifs.

• Two of the selected patterns (acgttt andacgtgc ) are related to Pho4p binding site.
However, they come at the 56th and 65th positions only.

• With this background model, we would thus not be able to detect the Pho4p binding
sites.

Markov chains

Another possibility is to use Markov chain models to estimate expected word frequencies. Try
the following commands and compare the results. None is as good as the option-bg upstream-
noorf, but in case one would not have the pre-calibrated non-coding frequencies (for instance
if the organism has not been completely sequenced), Markov chains can provide an interesting
approach.

in a Markov chain model, the probability of each oligonucleotide is estimated on the basis
of the probabilities smaller oligonucleotides that enter in its composition.

We will first apply a Markov model of order 1.

## Markov chain of order 1
oligo-analysis -v 1 -markov 1 \

-i PHO_up800-noorf.fasta -format fasta \
-l 6 -lth occ_sig 0 -sort \
-2str -return occ,proba,rank \
-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv1

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv1

The number of patterns is strongly reduced, compared to the equiprobable model. A few
AT-rich patterns are still present, but the Pho4p motif now appears at the 3rd position. We can
assemble these oligos in order to highligh the different motifs.

pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_sig 0_mkv1 \
-2str -sc 7 -subst 1 -v 1 \
-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv1.asmb

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv1.asmb

We can now increase the stringency, by using a Markov model oforder 2.

34



## Markov chain of order 2
oligo-analysis -v 1 -markov 2 \

-i PHO_up800-noorf.fasta -format fasta \
-l 6 -lth occ_sig 0 -sort \
-2str -return occ,proba,rank \
-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv2

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv2

We now have a very restricted number of patterns, with onnly 2remaining AT-rich motifs.
Besides these, most of the selected oligos can be assembled toform a moti corresponding to
the Pho4p binding site.

pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_sig 0_mkv2 \
-2str -sc 7 -subst 1 -v 1 \
-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv2.asmb

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv2.asmb

We can still increase the stringency with a Markov model of order 3.

## Markov chain of order 3
oligo-analysis -v 1 -markov 3 \

-i PHO_up800-noorf.fasta -format fasta \
-l 6 -lth occ_sig 0 -sort \
-2str -return occ,proba,rank \
-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv3

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv3

If we further increase the order of the Markov chain, there isnot a single significant oligonu-
cleotide.

## Markov chain of order 4
oligo-analysis -v 1 -markov 4 \

-i PHO_up800-noorf.fasta -format fasta \
-l 6 -lth occ_sig 0 -sort \
-2str -return occ,proba,rank,rank \
-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv4

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv4

Bernoulli model

Note that the Markov order 0 means that there is no dependencybetween successive residues.
The probability of a word is thus simply the product of its residue probabilities. This is a
Bernoulli model, but, by extension of the concepts of Markov chain, it is accepted to call it
markov chain of order 0.
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## Markov chain of order 0 = Bernoulli model
oligo-analysis -v 1 -markov 0 \

-i PHO_up800-noorf.fasta -format fasta \
-l 6 -lth occ_sig 0 -sort \
-2str -return occ,proba,rank \
-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv0

pattern-assembly -i PHO_up800-noorf_6nt-2str-noov_sig 0_mkv0 \
-2str -sc 7 -subst 1 -v 1 \
-o PHO_up800-noorf_6nt-2str-noov_sig0_mkv0.asmb

more PHO_up800-noorf_6nt-2str-noov_sig0_mkv0.asmb

Summary about the Markov chain background models

• The Markov model of order 1 returns AT-rich patterns with the highest significance, but
the Pho4p high affinity site is described with a good accuracy. The medium affinity site
appears as a single word (acgttt) in the isolated patterns.

• Markov order 1 returns less AT-rich motifs. The poly-A (aaaaaa) is however still asso-
ciated with the highest significance, but comes as isolated pattern.

• The higher the order of the markov chain, the most stringentare the conditions. For
small sequence sets, selecting a too high order prevents from selecting any pattern. Most
of the patterns are missed with a Markov chain of order 2, and higher orders don’t return
any single significant word.

5.3 Genome-scale pattern discovery

The detection of exceptional words can also be used to detectsignals in large sequence sets,
such as the whole set of upstream sequences for a given organism, or even its complete
genome. We will illustrate this with two examples.

5.3.1 Detection of over-represented words in all the yeast
upstream sequences

retrieve-seq -org Saccharomyces_cerevisiae -type upstre am -all \
-from -1 -to -800 -noorf -o Saccharomyces_cerevisiae_allu p_800-noorf.fasta.gz

Note that we added the extension.gz to the name of the output file. This suffix is inter-
preted by all theRSATprograms as an indication to compress the result using the command

gzip

. The result file occupies a much smaller space on your hard drive.
We will now analyze the frequency of all the heptanucleotides, and analyze their level of

over- or under-representation (for this, we use the option-two_tails). To estimate expected
frequencies, we will use a Markov model of order 4 (the other models are left as exercise).
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oligo-analysis -v 1 -i Saccharomyces_cerevisiae_allup_8 00-noorf.fasta.gz \
-l 7 -2str -noov -return occ,freq,proba,zscore,rank -sort -markov 4 \
-two_tails \
-o Saccharomyces_cerevisiae_allup_800-noorf_7nt-2str -noov_mkv4.tab

you can now compare the most significant oligonucleotides with the transcription factor
binding sites annotated in SCPD, the Sacharomyces cerevisiae Promoter Database (http://rulai.cshl.edu/cgi-

5.3.2 Detection of under-represented words in bacterial genomes

Exercise 5.4Analyze the frequencies of all the hexanucleotides inEscherichia coli K12. One
of them shows a very high degree of under-representation. Tryto understand the reason why
this hexanucleotide is avoided in this genome.

Info: the full genome ofEscherichia coli K12can be found in theRSATgenome directory.

ls $RSAT/data/genomes/Escherichia_coli_K_12_substr__ MG1655_uid57779/genome/contigs.txt

This file contains the list of chromosomes of the bacteria (inthis cxase there is a single
one, but forS.cerevisiaethere are 16 nuclear and one mitochondrial chromosomes). Itcan be
idrectly used as input by specifying the format-format filelist.

5.4 dyad-analysis

In the previous chapter, we saw thatoligo-analysisallows to detect over- and under-represented
motifs in biological sequences, according to a user-specified background model. Since 1997,
this program has been routinely used to predict cis-acting elements from groups of co-expressed
genes.

However, some motifs escape tooligo-analysis, because they do not correspond to an
oligonucleotide, but to a spaced pair of very short oligonucleotides (dyads). To address this
problem, we developed another program calleddyad-analysis.

TO BE WRITTEN
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6 String-based pattern matching

In a pattern matching problem, you start from one or several predefined patterns, and you
match this pattern against a sequence, i.e. you locate all occurrences of this pattern in the
sequences.

Patterns can be represented as strings (withdna-pattern) or position-weight matrices (with
patser).

6.1 dna-pattern

dna-patternis a string-based pattern matching program, specialized for searching patterns in
DNA sequences.

• This specialization mainly consists in the ability to search on both the direct and reverse
complement strands.

• A single run can either search for a single pattern, or for a list of patterns.

• multi-sequence file formats (fasta, filelist, wc, ig) are supported, allowing to match pat-
terns against a list of sequences with a single run of the program.

• String descriptions can be refined by using the 15-letters IUPAC code for uncompletely
specified nucleotides, or by using regular expressions.

• The program can either return a list of matching positions (default behaviour), or the
count of occurrences of each pattern.

• Imperfect matches can be searched by allowing substitutions. Insertions and deletions
are not supported. The reason is that, when a regulatory sitepresents variations, it is
generally in the form of a tolerance for substitution at a specific position, rather than
insertions or deletions. It is thus essential to be able distinguishing between these types
of imperfect matches.

6.2 Matching a single pattern

We will start by searching all positions of a single pattern in a sequence set. The sequence is
the set of upstream regions from the PHO genes, that was obtained in the tutorial on sequence
retrieval. We will search all occurrences of the most conserved core of the Pho4p medium
affinity binding site (CACGTT) in this sequence set.

Try the following command:
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dna-pattern -v 1 -i PHO_up800.fasta -format fasta \
-1str -p cacgtt -id ’Pho4p_site’

You see a list of positions for all the occurrences of CACGTT in the sequence.
Each row represents one match, and the columns provide the following information:

1. pattern identifier

2. strand

3. pattern searched

4. sequence identifier

5. start position of the match

6. end position of the match

7. matched sequence

8. matching score

6.3 Matching on both strands
To perform the search on both strands, type:

dna-pattern -v 1 -i PHO_up800.fasta -format fasta \
-2str -p cacgtt -id ’Pho4p_site’

Notice that the strand column now contains two possible values: D for “direct” and R for
“reverse complement”.

6.4 Allowing substitutions
To allow one substitutions, type:

dna-pattern -i PHO_up800.fasta -format fasta \
-2str -p cacgtt -id ’Pho4p_site’ -subst 1

Notice that the score column now contains 2 values: 1.00 for perfect matches, 0.83 (=5/6)
for single substitutions. This si one possible use of the score column: when substitutions are
allowed, the score indicates the percentage of matching nucleotides.

Actually, for regulatory patterns, allowing substitutions usually returns many false positive,
and this option is usually avoided. We will not use it furtherin the tutorial.

39



6.5 Extracting flanking sequences

The matching positions can be extracted along with their flanking nucleotides. Try:

dna-pattern -i PHO_up800.fasta -format fasta \
-2str -p cacgtt \
-id ’Pho4p_site’ -N 4

Notice the change in the matched sequence column: each matched sequence contains the
pattern CACGTT in uppercase, and 4 lowercase letters on each side (the flanks).

6.6 Changing the origin

When working with upstream sequences, it is convenient to work with coordinates relative to
the start codon (i.e. the right side of the sequence). Sequence matching programs (including
dna-pattern) return the positions relative to the beginning (i.e. the left side) of the sequence.
The reference (coordinate 0) can however be changed with theoption-origin . In this case,
we retrieved upstream sequences over 800bp. the start codonis thus located at position 801.
Try:

dna-pattern -i PHO_up800.fasta -format fasta \
-2str -p cacgtt \
-id ’Pho4p_site’ -N 4 -origin 801

Notice the change in coordinates.
In some cases, a sequence file will contain a mixture of sequences of different length (for

example if one clipped the sequences to avoid upstream coding sequences). The origin should
thus vary from sequence to sequence. A convenient way to circumvent the problem is to use a
negative value with the optionorigin . for example,-origin -100 would take as origin
the 100th nucleotide starting from the right of each sequence in the sequence file. But in our
case we want to take as origin the position immediately afterthe last nucleotide. For this, there
is a special convention:-origin -0 .

dna-pattern -i PHO_up800.fasta -format fasta \
-2str -p cacgtt \
-id ’Pho4p_site’ -N 4 -origin -0

In the current example, since all sequences have exactly 800bp length, the result is identical
to the one obtained with-origin 801 .

6.7 Matching degenerate patterns

As we said before, there are two forms of Pho4p binding sites:the protein has high affinity
for motifs containing the core CACGTG, but can also bind, with amedium affinity, CACGTT
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sites. The IUPAC code for partly specified nucleotides allows to represent any combination of
nucleotides by a single letter.

A (Adenine)
C (Cytosine)
G (Guanine)
T (Thymine)
R = A or G (puRines)
Y = C or T (pYrimidines)
W = A or T (Weak hydrogen bonding)
S = G or C (Strong hydrogen bonding)
M = A or C (aMino group at common position)
K = G or T (Keto group at common position)
H = A, C or T (not G)
B = G, C or T (not A)
V = G, A, C (not T)
D = G, A or T (not C)
N = G, A, C or T (aNy)

Thus, we could use the string CACGTK to represent the Pho4p consensus, and search both
high and medium affinity sites in a single run of the program.

dna-pattern -i PHO_up800.fasta -format fasta \
-2str -p cacgtk \
-id ’Pho4p_site’ -N 4 -origin -0

6.8 Matching regular expressions

Another way to represent partly specified strings is by usingregular expressions. This not
only allows to represent combinations of letters as we did above, but also spacings of variable
width. For example, we could search for tandem repeats of 2 Pho4p binding sites, separated
by less than 100bp. This can be represented by the following regular expression:

cacgt[gt].{0,100}cacgt[gt]

which means

• cacgt

• followed by either g or t [gt]

• followed by 0 to 100 unspecified letters .0,100

• followed by cacgt

• followed by either g or t [gt]

Let us try to use it with dna-pattern
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dna-pattern -i PHO_up800.fasta -format fasta \
-2str -id ’Pho4p_pair’ \
-N 4 -origin -0 \
-p ’cacgt[gt].{0,100}cacgt[gt]’

Note that the pattern has to be quoted, to avoid possible conflicts between special characters
used in the regular expression and the unix shell.

6.9 Matching several patterns

TO match a series of patterns, you first need to store these patterns in a file. Let create a pattern
file:

cat > test_patterns.txt
cacgtg high
cacgtt medium

(then type Ctrl-d to close)
check the content of your pattern file.

more test_patterns.txt

There are two lines, each representing a pattern. The first word of each line contains the
pattern, the second word the identifier for that pattern. This column can be left blank, in which
case the pattern is used as identifier.

We can now use this file to search all matching positions of both patterns in the PHO se-
quences.

dna-pattern -i PHO_up800.fasta -format fasta \
-2str -N 4 -origin -0 \
-pl test_patterns.txt

6.10 Counting pattern matches

In the previous examples, we were interested in matching positions. It is sometimes interesting
to get a more synthetic information, in the form of a count of matching positions for each
sequences. Try:

dna-pattern -i PHO_up800.fasta -format fasta \
-2str -N 4 -origin -0 -c \
-pl test_patterns.txt

With the option-c , the program returns the number of occurrences of each pattern in each
sequence. The output format is different: there is one row for each combination pattern-
sequence. The columns indicate respectively
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1. sequence identifier

2. pattern identifier

3. pattern sequence

4. match count

An even more synthetic result can be obtained with the option-ct (count total).

dna-pattern -i PHO_up800.fasta -format fasta -2str \
-pl test_patterns.txt -N 4 -origin -0 -ct

This time, only two rows are returned, one per pattern.

6.11 Getting a count table

Another way to display the count information is in the form ofa table, where each row repre-
sents a gene and each column a pattern.

dna-pattern -i PHO_up800.fasta -format fasta -2str \
-pl test_patterns.txt -N 4 -origin -0 -table

This representation is very convenient for applying multivariate statistics on the results (e.g.
classifying genes according to the patterns found in their upstream sequences)

Last detail: we can add one column and one row for the totals per gene and per pattern.

dna-pattern -i PHO_up800.fasta -format fasta -2str \
-pl test_patterns.txt -N 4 -origin -0 -table -total
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7 Drawing graphs

7.1 feature-map

The programfeature-map draws a graphical map of a list of features. A typical usage of
feature-map is to draw maps with the positions of regulatorymotifs detected by pattern match-
ing programs suchdna-pattern (string-based matching) orpatser (matrix-based matching).

7.1.1 Converting dna-pattern matches into features

We will analyze the same PHO family as in the tutorial on pattern discovery. We will use
successivelyoligo-analysis, dna-pattern and convert-features to obtain a list of features
with the matching locations of the over-represented hexanucleotides.

1. Runoligo-analysisto detect over-represented hexanucleotides in the upstream sequences
of the PHO genes.

oligo-analysis -i PHO_up800.fasta -format fasta \
-v -l 6 -2str \
-return occ,proba -lth occ_sig 0 -bg upstream \
-org Saccharomyces_cerevisiae -sort \
-o PHO_up800_6nt_2str_ncf_sig0

2. Rundna-pattern to locate these patterns in the upstream sequences.

dna-pattern -i PHO_up800.fasta -format fasta \
-pl PHO_up800_6nt_2str_ncf_sig0 -origin -0 \
-o PHO_up800_6nt_2str_ncf_sig0_matches.tab

3. Runconvert-features to convert these pattern matches into features.

convert-features \
-from dnapat -to ft \
-i PHO_up800_6nt_2str_ncf_sig0_matches.tab \
-o PHO_up800_6nt_2str_ncf_sig0_matches.ft

We will now play with this feature file, in order to obtain different drawings.
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7.1.2 Basic feature maps
feature-map -format jpg \

-i PHO_up800_6nt_2str_ncf_sig0_matches.ft \
-o PHO_up800_6nt_2str_ncf_sig0_matches.jpg

You can now open the filePHO_up800_6nt_2str_ncf_sig0_matches.jpgwith a web browser
or a drawing application.

This is a very simple representation: each feature is represented as a box. A specific color
is associated to each pattern (feature ID).

7.1.3 Refining the feature map

We will use a few additional options to add information on this feature map.

feature-map -format jpg \
-i PHO_up800_6nt_2str_ncf_sig0_matches.ft \
-legend -scalebar -scalestep 50 \
-from -800 -to 0 -scorethick \
-title ’Over-represented 6nt in PHO upstream sequences’ \
-o PHO_up800_6nt_2str_ncf_sig0_matches.jpg

This example illustrates some capabilities offeature-map:

• A title has been added to the drawing.

• A specific height is associated to each box, to reflect the score associated to the corre-
sponding feature.

• The scale bar indicates the location, in base pairs.

• A legend indicates the color associated to each pattern, aswell as its score.

7.1.4 Map orientation

Feature-maps can be oriented horizontally or vertically. The horizontal orientation is usually
the most convenient, but when labels are attached to each feature, the vertical orientation
prevents them from expanding over each other.

feature-map -format jpg \
-i PHO_up800_6nt_2str_ncf_sig0_matches.ft \
-legend -scalebar -scalestep 50 \
-from -800 -to 0 \
-vertical -symbol -label pos \
-title ’Over-represented 6nt in PHO upstream sequences’ \
-o PHO_up800_6nt_2str_ncf_sig0_matches.jpg

In this representation, alabel is written besides each feature box. In addition, asymbolhas
been attached to each feature ID (pattern). This symbol improves the readability of the map,
and is convenient for monochrome printers.
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7.1.5 Export formats

Feature-map can be exported in different formats, specifiedwith the option-format.

jpg (default) Thejpg format (also calledjpeg) is a bitmap format recognized by all the web
browsers and most drawing applications. The jpg standard includes a compression pro-
tocol, so that the resulting images occupy a reasonable space on the hard disk.

png Thepng format is a bitmap format which gives a better color rendering than jpg. It is
not compressed, and requires more space for storage. It is recognized by most browsers.

ps The postscript(ps) format is a vectorial format, which ensures a high quality result on
printing devices. Postscript files can be opened with specific applications, depending on
the operating system (ghostview, ghostscript). This format is recommended for drawing
graphs to be included in publications.

7.1.6 HTML maps

A HTML map can be created, which allows to display dynamically the feature-map in a web
browser. When the users positions the mouse over a feature, the corresponding information is
displayed in the status bar.

feature-map -format jpg \
-i PHO_up800_6nt_2str_ncf_sig0_matches.ft \
-legend -scalebar -scalestep 50 \
-from -800 -to 0 \
-scorethick -dots \
-title ’Over-represented 6nt in PHO upstream sequences’ \
-o PHO_up800_6nt_2str_ncf_sig0_matches.jpg \
-htmap > PHO_up800_6nt_2str_ncf_sig0_matches.html

Notice that we used the option-dot to attach a colored filled circle to each feature box.
Open the filePHO_up800_6nt_2str_ncf_sig0_matches.htmlwith a web browser (e.g. Netscape,

Mozilla, Safari). Position the mouse cursor over a feature (either the box or the filled circle
attached to it), and look the status bar at the bottom of the browser window.

7.1.7 Other options

The programfeature-map includes a few other options.

feature-map -help

A complete description of their functionality is provided in the help pages.

feature-map -h
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7.1.8 Feature converters

In the previous tutorial, we used the programconvert-features to convert matches fromdna-
pattern to features.

RSAT includes a few additional converters (these are older versions, and their functionali-
ties will progressively be incorporated inconvert-features).

features-from-dssp extracts features from the output file ofdssp (secondary structures)

features-from-fugue extracts features from the output file offugue

features-from-gibbs extracts features from thegibbs motif sampler, developed by Andrew
Neuwald.

features-from-matins extracts features from the result ofmatinspector, developed in Thomas
Werner’s team.

features-from-msf converts a multiple alignment file from formatmsf for features.

features-from-patser extracts features from the result of the matrix-based pattern match-
ing patser, developed by Jerry Hertz.

features-from-sigscan extracts features from the results of thesigscanprogram.

features-from-swissprot extracts features from aSwissprot file.

If you need to draw features from any other type of program output, it is quite simple to
write your own converter. The feature-map input is a tab-delimited text file, with one row per
feature, and one column per attribute.

1. map label (eg gene name)

2. feature type

3. feature identifier (ex: GATAbox, Abf1_site)

4. strand (D for Direct, R for Reverse),

5. feature start position

6. feature end position

7. (optional) description

8. (optional) score

7.2 XYgraph

The programXYgraph is a simple utility which plots graphs from a series of (x,y) coordi-
nates.
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7.2.1 Exercise: drawing features from patser

In the section on pattern-matching, we scanned all yeast upstream sequences with the PHO
matrix and stored the result in a file (PHO_matrix_matches_allup.txt ).

With the programsfeatures-from-patserandfeature-map, draw a map of the sites found in
this analysis.
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8 Markov models

Markov models allow to represent local dependencies between successive residues. A Markov
model of orderm assumes that the probability to find the residuer at positioni of a sequence
depends on thempreceding residues.

8.0.2 Transition frequency tables

Markov models are described by transition frequenciesP(R|Wm), i.e. the probability to os-
berve residueR at a certain position, depending on the preceding wordWm of sizem.

8.0.3 Oligonucleotide frequency tables

RSATallows to derive organism-specific Markov models from oligonucleotide frequency ta-
bles.

Pre-calibrated oligonucleotide frequency tables are stored in the form of oligonucleotide
frequency tables (see chapter on pattern discovery).

The calibration tables forEscherichia coli K12can be found in theRSATdirectoryoligo-
frequencies.

cd $RSAT/data/genomes/Escherichia\_coli\_K12/oligo-f requencies
ls -ltr

For example, the file4nt_upstream-noorf_Escherichia_coli_K12-1str.freq.gz indicates the
tetranucleotide frequencies for all the upstream sequences ofE.coli.

cd $RSAT/data/genomes/Escherichia_coli_K_12_substr__ MG1655_uid57779/oligo-frequencies/

## Have a look at the content of the 4nt frequency file
gunzip -c 4nt_upstream-noorf_Escherichia_coli_K_12_su bstr__MG1655_uid57779-1str.freq.gz

8.0.4 Converting oligonucleotide frequencies into transition
frequencies

Transition frequencies are automatically derived from thetable of oligonucleotide frequencies,
but one should take care of the fact that, in order to estimatethe transition frequencies for a
Markov model of orderm, we need to use the frequency tables for oligonucleotides ofsize
m+1.

We can illustrate this by converting the table of dinucleotide frequencies into a transition
matrix of first order. For this, we can use the programconvert-background-model.
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convert-background-model \
-i 2nt_upstream-noorf_Escherichia_coli_K_12_substr__ MG1655_uid57779-1str.freq.gz
-from oligo-analysis -to tab

The output displays the transition matrix of a Markov model of order 1. Each row of the
transition matrix indicates the prefixWm, and each column the suffixr. For a Markov model
of order 1, the prefixes are single residues.

We can now calculate a Markov model of 2nd order, from the table of trinucleotide frequen-
cies.

convert-background-model \
-i 3nt_upstream-noorf_Escherichia_coli_K_12_substr__ MG1655_uid57779-1str.freq.gz
-from oligo-analysis -to tab

The transition matrix contains 16 rows (prefixes, corresponding to dinucleotides) and 4
columns (the suffixes, corresponding to nucleotides).

The same operation can be extended to higher order markov models.

8.0.5 Bernoulli models

In contrast with Markov model, Bernoulli models assume that the residue probabilities are
independent from the position. By extension of the concept ofMarkov order, Bernoulli models
can be conceived as a Markov model of order 0. We can thus derive a Bernoulli model (m= 0)
from the nucleotide frequencies (m+1= 1).

convert-background-model \
-i 1nt_upstream-noorf_Escherichia_coli_K_12_substr__ MG1655_uid57779-1str.freq.gz
-from oligo-analysis -to tab

The suffix column is now empty (there is no suffix, since the order is 0), and the matrix
simply displays 4 columns with the frequencies ofA, C, GandT.
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9 Matrix-based Pattern discovery

RSATdoes not (yet) contain programs for matrix-based pattern discovery. However, several
excellent programs exist for matrix-based pattern discovery, and it is often useful to combine
various approaches in order to compare the results and select the most consistent ones. We
show hereafter some examples of utilization for some of these programs:

• consensus, a greedy approach of pattern discovery, developed by JerryHertz.

9.1 consensus (program developed by Jerry Hertz)

An alternative approach for matrix-based pattern discovery is consensus, a program written by
Jerry hertz, an based on a greedy algorithm. We will see how toextract a profile matrix from
upstream regions of the PHO genes.

9.1.1 Getting help

As for RSAT programs, there are two ways to get help from Jerry Hertz’ programs: a detailed
manual can be obtained with the option-h, and a summary of options with-help. Try these
options and read the manual.

consensus -h
consensus -help

9.1.2 Sequence conversion

consensususes a custom sequence format. Fortunately, the RSAT packagecontains a sequence
conversion program (convert-seq) which supports Jerry Hertz’ format. We will thus start by
converting the fasta sequences in this format.

convert-seq -i PHO_up800-noorf.fasta -from fasta -to wc -o PHO_up800-noorf.wc

9.1.3 Running consensus

Using consensus requires to choose the appropriate value for a series of parameters. We
found the following combination of parameters quite efficient for discovering patterns in yeast
upstream sequences.
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consensus -L 10 -f PHO_up800-noorf.wc -A a:t c:g -c2 -N 10

The main options used above are

-L 10 we guess that the pattern has a length of about 10 bp;

-N 10 we expect about 10 occurrences in the sequence set. Since there are 5 genes in the fam-
ily, this means that we expect on average 2 regulatory sites per gene, which is generally
a good guess for yeast.

-c2 indicatesconsensusthat the motif can be searched on both strands.

-A a:t c:g specifies the alphabet. Indeed,consensuscan be used to extract motif from DNA
sequences, proteins, or a text based on an arbitrary alphabet. In thus tutorial we are only
interested in DNA sequences, we wpecify thus-A a:t c:g (the semicolons indicate the
complementary residues).

By default, several matrices are returned. Each matrix is followed by the alignment of the
sites on which it is based. Note that the 4 matrices are highlysimilar, basically they are all
made of several occurrences of the high afinity siteCACGTG, and matrices 1 and 3 contain
one occurrence of the medium affinity siteCACGTT. These matrices are thus redundant, and
it is generally appropriate to select the first one of the listfor further analysis, because it is the
most significant matrix found by the program.

Also notice that these matrices are not made of exactly 10 sites each.consensusis able to
adapt the number of sites in the alignment in order to get the highest information content. The
option-N 10 was an indication rather than a rigid requirement.

We can use the options-pt 1 and -pf 1 to restrict the result to a single matrix (the most
significant one). To save the result in a file, we can use the symbol “greater than” (>) which
redirects the output of a program to a file.

consensus -L 10 -f PHO_up800-noorf.wc -A a:t c:g -c2 -N 10 -pf 1 -pt 1 \
> PHO_consensus_L10_N10_c2.matrix

(this may take a few minutes)
Once the task is achieved, check the result.

more PHO_consensus_L10_N10_c2.matrix

9.2 Random expectation
random-seq -format wc -r 10 -l 800 -bg upstream-noorf \

-org Saccharomyces_cerevisiae -ol 6 -lw 0 -o rand_Sc_ol6_n 10_l800.wc

consensus -L 10 -f rand_Sc_ol6_n10_l800.wc -A a:t c:g -c2 -N 10 -pf 1 -pt 1 \
> rand_Sc_ol6_n10_l800_L10_N10_c2.matrix
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10 Matrix-based pattern matching

10.1 Prerequisite

This tutorial assumes that you already followed the tutorial on Matrix-based pattern discovery.
To check this, list the files contained in directory with the results of your tutorial.

cd ${HOME}/practical_rsat
ls -1

You should find the following files.

PHO_up800-noorf.fasta
PHO_up800-noorf.wc
PHO_consensus_L10_N10_c2.matrix

10.2 patser (program developed by by Jerry Hertz)

We will now see how to match a profile matrix against a sequenceset. For this, we usepatser,
a program written by Jerry Hertz.

10.2.1 Getting help

help can be obtained with the two usual options.

patser -h
patser -help

10.2.2 Extracting the matrix from the consensus result file

Patser requires two input data:

• a sequence file (option-f ),

• a position-specific scoring matrix (option-m), like the one we obtained in the previ-
ouschapter, withconsensus.
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The output fromconsensuscan however not be used directly because it contains additional
information (the parameters of analysis, the sequences used to build the matrix, . . . ) besides
the matrix itself. One possibility is to cut the matrix of interest and save it in a separate file.

To avoid manual editing, RSAT contains a programconvert-matrix, which automaticaly
extracts a matrix from various file formats, including consensus.

convert-matrix -in_format consensus -i PHO_consensus_L1 0_N10_c2.matrix \
-return counts -o PHO_consensus_L10_N10_c2_matrix.tab

more PHO_consensus_L10_N10_c2_matrix.tab

10.2.3 Getting information about a matrix

The programconvert-matrixincludes several output options, which allow you to get additional
information about your matrix. For example you can obtain the degenerate consensus from a
matrix with the following options.

convert-matrix -v 1 -pseudo 1 -in_format consensus -i PHO_c onsensus_L10_N10_c2.matrix \
-return consensus

convert-matrix -v 1 -pseudo 1 -in_format consensus -i PHO_c onsensus_L10_N10_c2.matrix \
-return parameters

The programconvert-matrix also allows to derive frequencies, weights or information
from the count matrix.

convert-matrix -v 1 -pseudo 1 -in_format consensus -i PHO_c onsensus_L10_N10_c2.matrix \
-return frequencies,weights,information

Additional information can be otbained with the on-line help for convert-matrix.

convert-matrix -h

10.2.4 Detecting Pho4p sites in the PHO genes

After having extracted the matrix, we can match it against the PHO sequences to detect puta-
tive regulatory sites.

patser -m PHO_consensus_L10_N10_c2_matrix.tab -f PHO_up 800-noorf.wc -A a:t c:g -c -ls 9

By default, patser uses equiprobable residue frequencies. However, we can impose our own
priors in the following way.

patser -m PHO_consensus_L10_N10_c2_matrix.tab -f PHO_up 800-noorf.wc -A a:t 0.325 c:g 0.175
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We an also adapt our expected frequencies from pre-calibrated genome frequencies, for
example, residue frequencies from all the yeast upstream sequences.

## Calculate prior frequencies
convert-background-model -from oligo-analysis -to patse r \

-i ${RSAT}/data/genomes/Saccharomyces_cerevisiae/oli go-frequencies/1nt_upstream-noorf_Saccharomyces_cer evisiae-noov-2str.freq.gz
-o 1nt_upstream-noorf_Saccharomyces_cerevisiae-noov- 2str_patser.tab

more 1nt_upstream-noorf_Saccharomyces_cerevisiae-noo v-2str_patser.tab

patser -m PHO_consensus_L10_N10_c2_matrix.tab -f PHO_up 800-noorf.wc -a 1nt_upstream-noorf_Saccharomyces_cere visiae-noov-2str_patser.tab

10.2.5 Detecting Pho4p sites in all upstream regions

We will now match the PHO matrix against the whole set of upstream regions from the≈ 6000
yeast genes. This should allow us to detect new genes potentially regulated by Pho4p.

One possibility would be to useretrieve-seqto extract all yeast upstream regions, and save
the result in a file, which will then be used as input bypatser. Alternatively, in order to avoid
occupying too much space on the disk, we can combine both tasks in a single command, and
immediately redirect the output ofretrieve-seqas input forpatser. This can be done with the
pipe character‖ as below.

patserresult can be redirected to a file with the unix “greater than”(>) symbol. We will
store the result of the genome-scale search in a filePHO_matrix_matches_allup.txt.

retrieve-seq -type upstream -from -1 -to -800 \
-org Saccharomyces_cerevisiae \
-all -format wc -label id,name \
| patser -m PHO_consensus_L10_N10_c2_matrix.tab -ls 9 -A a :t c:g \
> PHO_consensus_L10_N10_c2_matrix.tab_matches_allup. txt

more PHO_consensus_L10_N10_c2_matrix.tab_matches_all up.txt

10.2.6 Interpretation of the P-value returned by patser

The programpatser returns a column with the P-value of each mach. The P-value indicates
the probability of false-positive, i.e. the probability toconsider a site as an instance of the
motif whereas it is not.

In other terms, the P-value represents the probability to observe a score (X) at least as high
as that of the current sequence segment (xi,i+w−1)

Pval= P(X ≥ xi,i+w−1|B)

where

X is a random variable representing the matrix score,
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xi,i+w−1 is the score assigned to the sequence segment of widthw starting at positioni of the
sequence,

B is the background model.

We will evaluate the reliability of this P-value by analyzing the distribution of estimated
P-value for all the positions of a random sequence. By default, patser only calculates the
P-value for the weight scores > 0. We will add the option-M -999 to force patser to calculate
P-values for all the score.

The raw results from patser will be processed in the fillowingway:

1. features-from-patser converts the patser result into a tab-delimited file;

2. awk is used to cut the 8th column of this file, and convert the P-value into a significance
(sig=-log10(Pval))

3. classfreqcalculates the distribution of ln(P-value);

4. XYgraph is used to draw an XY plot, representinf the theoretical P-value on the X axis,
and on the Y axis the frequency observed for this P-value in the random sequence.

random-seq -l 100000 -format wc \
| patser -A a:t c:g -m PHO_consensus_L10_N10_c2_matrix.ta b -b 1 -d1 -p -M -999 \
| features-from-patser \
| XYgraph -xcol 8 -ycol 9 -o PHO_consensus_L10_N10_c2_rand _score_versus_Pval.png

random-seq -l 100000 -format wc \
| patser -A a:t c:g -m PHO_consensus_L10_N10_c2_matrix.ta b -b 1 -d1 -p -M -999 \
| features-from-patser \
| awk -F ’\t’ ’{print -$9/log(10)}’ \
| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_rand_ sig_distrib.tab

more PHO_consensus_L10_N10_c2_rand_sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_rand_sig_distrib. tab \
-title1 ’Validation of P-values returned by patser’ \
-title2 ’Distribution of these P-values in random sequence s’ \
-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ - ymax 1 \
-yleg1 ’inverse cumulative frequency’ -ylog 10 \
-xsize 800 -format png -lines \
-o PHO_consensus_L10_N10_c2_rand_sig_distrib.png

The image file can be opened with any graphical display application (e.g. xv), or with a
web browser (e.g.Mozilla ).

The distribution almost perfectly follows a diagonal, indicating that the theoretical P-value
calculated bypatser corresponds to the empirical one.
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However, we should bear in mind that this P-value is based on the basis of a Bernoulli
model, i.e. it assumes that successive residues are independent from each other.

The previous test was based on th simplest possible model forgenerating the random se-
quence: equiprobable and independent nucleotides. We can thus wonder if the P-value will
still be valid with random sequences generated following a more complex model. We will
successively test two models:

• random sequences generated according to a Bernoulli model,with unequal residue fre-
quencies;

• random sequences generated according to a higher-order Markov model.

Bernoulli model with unequal frequencies

## Generate a bg model for patser
convert-background-model -from oligo-analysis -to patse r \

-i $RSAT/data/genomes/Saccharomyces_cerevisiae/oligo -frequencies/1nt_upstream-noorf_Saccharomyces_cerev isiae-1str.freq.gz
-o 1nt_upstream-noorf_Saccharomyces_cerevisiae-1str_ freq.tab

## Generate a random sequence with a Bernouli model
## and analyze it with patser using the same expected residue frequencies
random-seq -l 100000 -format wc -bg upstream-noorf -ol 1 -or g Saccharomyces_cerevisiae \

| patser -a 1nt_upstream-noorf_Saccharomyces_cerevisia e-1str_freq.tab \
-m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \

| features-from-patser \
| awk -F ’\t’ ’{print -$9/log(10)}’ \
| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_rand_ Mkv0_sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_rand_Mkv0_sig_dis trib.tab \
-title1 ’Validation of P-values returned by patser’ \
-title2 ’Distribution of these P-values in random sequence s’ \
-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ - ymax 1 \
-yleg1 ’inverse cumulative frequency’ -ylog 10 \
-xsize 800 -format png -lines \
-o PHO_consensus_L10_N10_c2_rand_Mkv0_sig_distrib.pn g

Markov model of order 1

random-seq -l 100000 -format wc -bg upstream-noorf -ol 2 -or g Saccharomyces_cerevisiae \
| patser -a 1nt_upstream-noorf_Saccharomyces_cerevisia e-1str_freq.tab \

-m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \
| features-from-patser \
| awk -F ’\t’ ’{print -$9/log(10)}’ \
| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_rand_ Mkv1_sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_rand_Mkv1_sig_dis trib.tab \
-title1 ’Validation of P-values returned by patser’ \
-title2 ’Distribution of these P-values in random sequence s’ \
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-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ - ymax 1 \
-yleg1 ’inverse cumulative frequency’ -ylog 10 \
-xsize 800 -format png -lines \
-o PHO_consensus_L10_N10_c2_rand_Mkv1_sig_distrib.pn g

Markov model of order 5

random-seq -l 100000 -format wc -bg upstream-noorf -ol 6 -or g Saccharomyces_cerevisiae \
| patser -a 1nt_upstream-noorf_Saccharomyces_cerevisia e-1str_freq.tab \

-m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \
| features-from-patser \
| awk -F ’\t’ ’{print -$9/log(10)}’ \
| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_rand_ Mkv5_sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_rand_Mkv5_sig_dis trib.tab \
-title1 ’Validation of P-values returned by patser’ \
-title2 ’Distribution of these P-values in random sequence s’ \
-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ - ymax 1 \
-yleg1 ’inverse cumulative frequency’ -ylog 10 \
-xsize 800 -format png -lines \
-o PHO_consensus_L10_N10_c2_rand_Mkv5_sig_distrib.pn g

10.2.7 Score distributions in promoter sequences
retrieve-seq -all -noorf -org Saccharomyces_cerevisiae - format wc \

| patser -a 1nt_upstream-noorf_Saccharomyces_cerevisia e-1str_freq.tab \
-m PHO_consensus_L10_N10_c2_matrix.tab -b 1 -d1 -p -M -999 \

| features-from-patser \
| awk -F ’\t’ ’{print -$9/log(10)}’ \
| classfreq -v -ci 0.01 -o PHO_consensus_L10_N10_c2_allup _sig_distrib.tab

XYgraph -i PHO_consensus_L10_N10_c2_allup_sig_distrib .tab \
-title1 ’Validation of P-values returned by patser’ \
-title2 ’Distribution of these P-values in random sequence s’ \
-xcol 1 -ycol 9 -xleg1 ’theoretical sig=-log10(P-value)’ - ymax 1 \
-yleg1 ’inverse cumulative frequency’ -ylog 10 \
-xsize 800 -format png -lines \
-o PHO_consensus_L10_N10_c2_allup_sig_distrib.png

10.3 Scanning sequences with matrix-scan

The programmatrix-scan allows to scan sequences with a position-specific scoring matrix
(PSSM), in the same way as patser. However, it presents some differences:
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1. matrix-scan is much slower thanpatser, because it is a perl script (whereaspatser is
compiled). However, for most tasks, we can affor dto spend a few minuts per genome
rather than a few seconds.

2. matrix-scan supports higher-order Markov chain models, whereaspaters only sup-
ports Bernoulli models. The markov models can be defined from different sequence
sets: external sequences, input sequences, or even locally(adaptive background mod-
els).

3. matrix-scan calculates the P-value associated to each match for Bernouilli models as
well as higher-order Markov chain models.

10.3.1 Bernoulli background models

In matrix-scan, the background model can be calculated from the sequences to be scanned.
We use the option -bginput in association with -markov 0 to calculate a Bernoulli model from
the input sequences. The option -return bg_model displays in the output details on the calcu-
lated background model.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \
-i PHO_up800-noorf.wc -seq_format wc -bginput -markov 0 \
-lth score 0 -return sites,limits,bg_model \
-origin -0 \
-o PHO_consensus_L10_N10_c2_matches_mkv0.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv0. tab \
-format png -legend -scalebar -scalestep 50 -scorethick \
-o PHO_consensus_L10_N10_c2_matches_mkv0.png

10.3.2 Higher order (Markov) background models

Global background models

To use pre-calibrated background model, we use -bgfile option. Such models are available
from within RSAT (refer to Chapter 8 - Markov models for more details). As input formatrix-
scan, we use the models trained witholigo-analysiswith the options "ovlp" and "1str".

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \
-i PHO_up800-noorf.wc -seq_format wc \
-bgfile ${RSAT}/data/genomes/Saccharomyces_cerevisia e/oligo-frequencies/2nt_upstream-noorf_Saccharomyce s_cerevisiae-ovlp-1str.freq.gz\
-lth score 0 -return sites,limits,normw\
-origin -0 \
-o PHO_consensus_L10_N10_c2_matches_mkv1.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv1. tab \
-format png -legend -scalebar -scalestep 50 -scorethick \
-o PHO_consensus_L10_N10_c2_matches_mkv1.png

59



In this command, we have used Markov model of order 1, and in addition to the weight, the
output displays the normalised weight.

Adaptive Markov models

Adaptative background models are calculated in sliding windows centered on the scored seg-
ment. We use option -window to define the size of the window in combination with -markov
for the Markov order. The return field bg_residues returns the frequencies of the residues in
each background model and can be used to estimate the GC content in the surroundings of the
scored segment.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \
-i PHO_up800-noorf.wc -seq_format wc -window 200 -markov 2 \
-lth score 0 -return sites,limits,bg_residues\
-origin -0 \
-o PHO_consensus_L10_N10_c2_matches_mkv2.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv2. tab \
-format png -legend -scalebar -scalestep 50 -scorethick \
-o PHO_consensus_L10_N10_c2_matches_mkv2.png

10.3.3 P-values

One of thematrix-scan innovative features is the estimation of P-values for each match,
including for higher-order Markov chain background models. (see below "Computing the
theoretical score distribution of a PSSM" for more details on the calculation). For use with
adaptative Markov models, it is necessary to provide a threshold on the score to limit comput-
ing time. With the rank return field, the matches are sorted bydecreasing significativity, and
we select only the 3 top scoring matches for each sequences.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \
-i PHO_up800-noorf.wc -seq_format wc -window 200 -markov 1 \
-lth score 0 -return sites,limits,pval,rank -uth rank 3\
-origin -0 \
-o PHO_consensus_L10_N10_c2_matches_mkv1_pval.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv1_ pval.tab \
-format png -legend -scalebar -scalestep 50 -scorethick \
-o PHO_consensus_L10_N10_c2_matches_mkv1_pval.png

With non-adpatative background models, it is possible to select a threshold on the P-value.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \
-i PHO_up800-noorf.wc -seq_format wc -bginput -markov 0 \
-uth pval 0.0001 -return sites,limits,pval \
-origin -0 \
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-o PHO_consensus_L10_N10_c2_matches_mkv0_pval.tab

feature-map -i PHO_consensus_L10_N10_c2_matches_mkv0. tab \
-format png -legend -scalebar -scalestep 50 -scorethick \
-o PHO_consensus_L10_N10_c2_matches_mkv0_pval.png

10.3.4 Observed distribution of scores and site enrichment

Distribution of scores

matrix-scan can return the observed distribution of scores instead of each individual matches.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \
-i PHO_up800-noorf.wc -seq_format wc -bginput -markov 0 \

-return distrib \
-o PHO_consensus_L10_N10_c2_distrib_mkv0.tab

We can now draw an XY plot of this distribution.

## Draw the theoretical distribution
XYgraph -i PHO_consensus_L10_N10_c2_distrib_mkv0.tab \

-xcol 2 -ycol 3 \
-title1 ’PHO matrix’ \
-title2 ’Observed distribution of weight scores (Bernoull i model)’ \
-ymin 0 -yleg1 ’Probability’ \
-xsize 800 -xleg1 ’Weight score’ \
-format png -lines -legend \
-o PHO_consensus_L10_N10_c2_distrib_mkv0.png

Enrichment in sites

A typical use of the distribution of scores is to compare the number of occurences of a given
match in the input sequence to the expected number of occurences in the background model.
A Binomial test is run for each possible weight and a P-value isreturned. This P-value repre-
sents the probability to observe at least the observed number of matches with a given weight
by chance in a sequence of the same length as the input sequence. If the difference between the
observed and expected occurences is significant, the matches with the given weight are consid-
ered as true positives. This approach estimates the over-representation of matches in the input
sequences and can be used to retrieve significant matches based on the over-representation of
these matches in the input sequence. In the following command, results are sorted by decreas-
ing significativity on the overrepresentation of the given scores.

matrix-scan -m PHO_consensus_L10_N10_c2_matrix.tab \
-i PHO_up800-noorf.wc -seq_format wc -bginput -markov 0 \

-return occ_proba -lth occ_sig 0 -sort_distrib\
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-o PHO_consensus_L10_N10_c2_occ_proba_mkv0.tab

XYgraph -i PHO_consensus_L10_N10_c2_occ_proba_mkv0.ta b \
-xcol 2 -ycol 11 \
-title1 ’PHO matrix’ \
-title2 ’Site enrichment (Bernoulli model)’ \
-ymin 0 -yleg1 ’Over-representation significativity’ \
-xsize 800 -xleg1 ’Weight score’ \
-format png -lines -legend \
-o PHO_consensus_L10_N10_c2_occ_proba_mkv0.png

10.3.5 Scanning sequences with multiple matrices

matrix-scan can scan sequences with multiple motifs at a time. There are 3ways to pro-
vide several matrices : (i) by calling repeatedly -m option,(ii) by providing a file containing
multiple sequences, (iii) bu using -mlist option to providea list of matrices filenames.

We will now work with the motifs describing the binding sitesof Met31p and Met4p tran-
scription factors that are involved in the regulation of methionine metabolism in the yeast
Saccharomyces cerevisiae(Gonze et al, 2005).

First, we will retrieve the promoter sequences of the methionine-responding genes of the
following list with retrieve-seq (refer to the Chapter Retrieve sequences if necessary).

MET8
MET32
MET18
MET30
MET28
MET6
MET10
MET13
MET3
ECM17
MET14
MET1
MET17
VPS33
MET2
ZWF1
MET4
MET22
MET7
MET31
MET12
MET16

The sequences should be in a file namedMET_up800-noorf.fasta.
Copy the following matrices describing the MET motifs in a filenamedMET_matrices.tab.
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; MET4 matrix, from Gonze et al. (2005). Bioinformatics 21, 3 490-500.
A | 7 9 0 0 16 0 1 0 0 11 6 9 6 1 8
C | 5 1 4 16 0 15 0 0 0 3 5 5 0 2 0
G | 4 4 1 0 0 0 15 0 16 0 3 0 0 2 0
T | 0 2 11 0 0 1 0 16 0 2 2 2 10 11 8
//
; MET31 matrix, from Gonze et al. (2005). Bioinformatics 21, 3490-500.
A | 3 6 9 6 14 18 16 18 2 0 0 0 1 3 8
C | 8 3 3 2 3 0 1 0 13 2 0 1 0 3 6
G | 4 3 4 8 0 0 1 0 2 0 17 1 17 11 1
T | 3 6 2 2 1 0 0 0 1 16 1 16 0 1 3

Individual matches

We can search for individual matches with the 2 matrices, with a threshold on the P-value. This
threshold is particularly important when dealing with multiple matrices. Indeed, matrices may
be very different in terms of size or information content, leading to very different score ranges.
Putting a threshold on the score may thus return many false positive predictions for one of the
matrices. By putting a threshold on the P-value, the threshold is coherent for all matrices
and results are not biased by the differences in weight ranges. Here we only report the 3 top
scoring sites for each matrix in each sequences with the option -rank_pm.

matrix-scan -m MET_matrices.tab -consensus_name \
-i MET_up800-noorf.fasta -bginput -markov 0\
-return sites,pval,rank,limits -uth pval 1e-04 -uth rank_ pm 3 \
-origin -0 \

-o MET_3topsites_matches_mkv0.tab

feature-map -i MET_3topsites_matches_mkv0.tab \
-format png -legend -scalebar -scalestep 50 -scorethick \
-o MET_3topsites_matches_mkv0.png

Sites enrichment

It is also possible to detect the most significant matches, asregards to their enrichment in the
input sequence, compared to the background. For each matrix, the 2 most significant scores
are returned by using the threshold -uth occ_sig_rank 2.

matrix-scan -m MET_matrices.tab -consensus_name \
-i MET_up800-noorf.fasta -bginput -markov 0\

-return occ_proba -uth occ_sig_rank 2 -sort_distrib\
-o MET_2topscores_occ_mkv0.tab
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10.3.6 Detecting Cis-Regulatory element Enriched Regions
(CRER)

An extension of the concept of enrichement of sites in the input sequence is the detecttion
of CRER, which are local over-representation of matches. The enrichment is calculated in
windows of variable sizes, which may be overlapping. This concept is to be related to the
search of homo- and hetero-typic modules, also known as CRM (Cis-Regulatory Modules).
The rationale is that matches that are located in a region containing multiple predictions are
more likely to be binding sites.

Two options are required for CRER search : a threshold on P-value and a maximum size
for the CRER (typically between 150 and 300 bp).

matrix-scan -m MET_matrices.tab -consensus_name \
-i MET_up800-noorf.fasta \
-bgfile ${RSAT}/data/genomes/Saccharomyces_cerevisia e/oligo-frequencies/2nt_upstream-
noorf_Saccharomyces_cerevisiae-ovlp-1str.freq.gz \

-uth pval 0.0001 -origin 0 -decimals 1 \
-return crer,normw,rank \

-uth crer_size 200 \
-o MET_crer_mkv1.tab

feature-map -i MET_crer_mkv1.tab \
-format png -legend -scalebar -scalestep 50 -scorethick \
-o MET_crer_mkv1.png

To view individual site matches over CRERs, we use -return sites,crer. The result file is
only intended for display withfeature-map since the columns for sites and crer return types
are differents.

matrix-scan -m MET_matrices.tab -consensus_name \
-i MET_up800-noorf.fasta \
-bgfile ${RSAT}/data/genomes/Saccharomyces_cerevisia e/oligo-frequencies/2nt_upstream-noorf_Saccharomyce s_cerevisiae-ovlp-1str.freq.gz

-uth pval 0.0001 -origin 0 -decimals 1 \
-return crer,sites,limits \

-uth crer_size 200 \
-o MET_crer_sites_mkv1.tab

feature-map -i MET_crer_sites_mkv1.tab \
-format png -legend -scalebar -scorethick -symbol \
-o MET_crer_sites_mkv1.png

10.4 Computing the theoretical score distribution of a
PSSM

The programmatrix-distrib returns the probability to observe a given score, on the basis of
the theoretical model proposed by Staden (1989). For Bernoulli (Markov order 0) background

64



models, the distribution of scores is computed with the algorithm described by Bailey (Bioin-
formatics, 1999). For Markov background models with higherorders, we have extended this
algorithm to take into account the dependencies between residues.

## Calculat the theoretical distribution of a PSSM
matrix-distrib -v 1 -matrix_format consensus \

-m PHO_consensus_L10_N10_c2.matrix \
-decimals 2 \
-bgfile ${RSAT}/data/genomes/Saccharomyces_cerevisia e/oligo-frequencies/2nt_upstream-noorf_Saccharomyce s_cerevisiae-ovlp-1str.freq.gz
-o PHO_consensus_L10_N10_c2_distrib_theor.tab

Note that we restricted here the precision to 2 decimals. Indeed, for computational reasons,
the computing time increases exponentially with the numberof decimals. You can experiment
this by changing the number of decimals, and you will see thatthe computation time increases
drastically above 3 decimals.

In any case, for most practical applications, 2 decimals aremore than enough for the detec-
tion of matches with matrices (the first decimal would even besufficient).

We can now draw an XY plot of this distribution.

## Draw the theoretical distribution
XYgraph -i PHO_consensus_L10_N10_c2_distrib_theor.tab \

-xcol 1 -ycol 2 \
-title1 ’PHO matrix’ \
-title2 ’Theoretical distribution of weight scores’ \
-ymin 0 -yleg1 ’Probability’ \
-xsize 800 -xleg1 ’Weight score’ \
-format png -lines -legend \
-o PHO_consensus_L10_N10_c2_theor_distrib.png

The raw distribution is not very informative. A more interpretable information will be pro-
vided by the inverse cumulative distribution, which indicates, for each score, the probability
to observe by chance a site with at least that score. This distribution can be considered as an
estimation of the P-value, i.e. the risk of error if we consider as significant a site with a given
score.

## Draw the theoretical distribution
XYgraph -i PHO_consensus_L10_N10_c2_distrib_theor.tab \

-xcol 1 -ycol 2,4 \
-title1 ’PHO matrix’ \
-title2 ’Theoretical distribution of weight scores’ \
-ymin 0 -ymax 1 -yleg1 ’Probability’ \
-xsize 800 -xleg1 ’Weight score’ \
-format png -lines -legend \
-o PHO_consensus_L10_N10_c2_Pval_distrib.png

As expected, the distribution of P-value rapidly decreaseswith increasing values of scores.
for the purpose of deteecting binding sites, the most intersting part of this distribution is the
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right tail, corresponding to high values of weight scores. We would like to display this tail
with a higher detail, in order to distinguish the low P-values. A convenient way to do this is to
use a logarithmic scale for the Y axis.

## Draw the theoretical distribution
XYgraph -i PHO_consensus_L10_N10_c2_distrib_theor.tab \

-xcol 1 -ycol 2,4 \
-title1 ’PHO matrix’ \
-title2 ’Theoretical distribution of weight scores’ \
-ymin 0 -ymax 1 -ylog -yleg1 ’Probability’ \
-xsize 800 -xleg1 ’Weight score’ \
-format png -lines -legend \
-o PHO_consensus_L10_N10_c2_Pval_distrib_Ylog.png

10.4.1 Estimating the quality of a PSSM

The programmatrix-quality can be used to estimate the quality of a position-specific scoring
matrix, by comparing the distribution of scores observed ina positive set (typically, the known
binding sites for a transcriptiojn factor), and a negative set (for example, a set of randomly
selected promoter sequences).
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11 Evaluating the quality of
position-specific scoring matrices

11.1 Prerequisite

This tutorial assumes that you alredy followed the tutorialonMatrix based pattern matching.

11.2 Why is important to estimate the quality of a
matrix?

Position-specific scoring matrices are frequently used to predict transcription factor binding
sites in genome sequences. At this point, following the tutorial, you have been able to built
a matrix from a set of known binding sites for a transcriptionfactor, and use it to detect new
putative binding sites on different promoters, so the result is already there. But! What if there
was a problem with the original set of biding sites? Where did they came from? Is the original
experiment 100% reliable?

Matrices are generally built from a collection of experimentally characterized binding sites,
databases as RegulonDB or TRANSFAC gather all the informationreported in the literature
about the interaction between Transcription Factors and their respective binding sites, on those
databases you can get the sequences to built a matrix or download one or several available
matrices for your favourite TF.

However, even if you built your own matrix or if you got it froma database, their reliability
to predict novel binding sites is highly variable, due to thesmall number of training sites or
the inappropriate choice of parameters when building the matrix.

There are some classical theoretical measures to describe some properties of matrices, but
this measures may fail to predict the behaviour in real situations, cause they don’t tell if the
new detected putative sites might have a biological relevance.

So at the end in order to know if we can trust the sites we detected with pattern matching
methodologies we need to:

• Know the composition of the matrix.

• Analyse the sites used to build the matrix.

• Analyze the behaviour of the matrix in a real situation.

• Analyze a negative control of the matrix and it’s behavior in a real situation.
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All this procedure can be done with the programmatrix-qualityand a correct tune of it’s
parameters. This is done combining theoretical and empirical score distributions to assess the
predictive capability of matrices.

As a example we are going to use the matrix for theE. coliK12 transcriptional factor LexA,
which is available at RegulonDB.

AC ECK12_ECK120012770_LexA.20.cons
XX
ID ECK12_ECK120012770_LexA.20.cons
XX
P0 A T C G
1 12 3 3 5
2 0 1 22 0
3 0 23 0 0
4 0 0 0 23
5 1 14 2 6
6 12 5 3 3
7 1 15 5 2
8 12 5 2 4
9 6 15 2 0
10 10 6 5 2
11 7 11 5 0
12 13 5 2 3
13 4 12 4 3
14 12 2 7 2
15 0 0 23 0
16 23 0 0 0
17 0 0 0 23
18 1 13 8 1
19 12 6 2 3
20 6 13 2 2
21 11 8 3 1
XX
//

Please copy this matrix and paste it on a file. For the propose of the chapter the file will be
namedLexA_matrix.transfac.

11.3 How to estimate the theoretical distribution of a
matrix?

As has been explained in the previous chaptermatrix-scangives a Weight Score (WS) to each
site, and we usually take this weigth or statistics based on it to decide if the site is good or if
it’s not.

However, this WS can be misleading, because its range dependson the matrix width and
information content. For example: The relevance of a site with a WS of 15 detected with a
matrix having a WS range of -5 to 40 is not the same as if the rangewas -5 to 16.
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So depending on the WS range you can decide whether a WS for a given site is relevant.
One way to calculate all the possible Weight Scores that a matrix can give, is to generate an
endless random sequence , and search for sites withmatrix-scanbut without any threshold, so
it will return ALL the evaluated sites, which means a lot of sites with negative WS and few
ones with positives WS. This way you’ll see not only the highestt and lowest WS, but also
you’ll be able to see the frequency of each score.

As a little test we generate a long random sequence based onE. coli K12 genome composi-
tion.

random-seq -l 1000 -bg upstream -org Escherichia_coli_K_1 2_substr__MG1655_uid57779 -ol 2
-o random_seq_E.coliK12.fas

And now we run search sites with our matrix usingmatrix-scanwithout any thresholds.

matrix-scan -m LexA_matrix.transfac -i random_seq_E.col iK12.fas \
-bgfile 2nt_upstream-noorf_Escherichia_coli_K_12_sub str__MG1655_uid57779-1str.freq.gz \
-matrix_format transfac \
-o LexA_bs_search_random_seq.tab

So now we can count how many times does a WS appers in a random enviroment just
by chance, remeber the count will change a bit for each generated random sequence and the
variation in the count will decreas as we increase sequence length.

But instead of doing this manually trying to simulate an infinite randome sequence and scan
it, which will take a lot of time, we will usematrix-distriband this program will calculate the
number of times a score should appear in an endless random sequence, and oviusly this result
contains as well the range for possible Weight Scores (WS).

First of all we will need to convert the matrix in to tab format.

convert-matrix -i LexA_matrix.transfac \
-from transfac -to tab \
-return counts,parameters,consensus
-o LexA_matrix.tab

matrix-distrib -m LexA_matrix.tab \
-bgfile 2nt_upstream-noorf_Escherichia_coli_K_12_sub str__MG1655_uid57779-noov-2str.freq.gz
-o LexA_matrix_distrib.tab

So this simulates a search for sites in an endless random sequence based on the genome of
E. coli K12.

In this file you can see the frequency (probability) of findingeach value of WSs, or in other
words we have theprobaility distribution of weight scores.

XYgraph -i LexA_matrix_distrib.tab -format png \
-xcol 1 -ycol 2 \
-o LexA_matrix_probability_distrib.png
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Now we know the range of WS goes from -40 to 17.7, and in the graphshowing the prob-
ability distribution of scores you can se the probability ofhaving a positive score is low, and
since the range goes up to 17 a WS of 15 for a site in the genome, seams to be a good score,
at least in theory.

But this graph is only for one matrix, and is a matrix for one of the transcriptional factors
with the most conserved binding sites, other matrices basedin fewer and/or less conserved
sites will have a different shape, e.g. a widder distribution.

In the output file frommatrix-distrib we also have the inverse cumulative distribution of
WS at column num. 4 so we can know how frequent (probable) is to find a WS of a given X
value or higher, which is the definition of theP-value.

XYgraph -i LexA_matrix_distrib.tab -format png \
-xcol 1 -ycol 2,4 \
-o LexA_matrix_probability_distrib_invcum.png

But we want to be able to se the probabilities for the higher WSs,for this we will apply log
to the y-axis.

XYgraph -i LexA_matrix_distrib.tab -format png \
-xcol 1 -ycol 2,4 -ylog \
-o LexA_matrix_probability_distrib_invcum_ylog.png

e.g. As you see in the graph to find a WS of 10 or higher than 10 has aP-value of aprox. 1e5,
which seems excellent at first sight. However, with this cutoff, we would still expect about 42
false positives if we scan the whole genome of E. coli (4.2Mb)on both strands.

Remember each matrix has a specific theoretical distribution, depending on the particular
frequency of each residue in each column.

11.4 How to compare the theoretical distribution with
the scores of the known binding sites?

In order to estimate the capability of a matrix to distinguish bona fide binding sites from
genome background,matrix-qualityimplements a method that relies on the combined analysis
of theoretical and empirical score distributions in positive and negative control sets.

The sensitivity of a matrix is the fraction of correct sites detected above a score threshold.
Sensitivity is defined as

Sn= TP/(TP+FN) (11.1)

where TP is the number true positives (i.e. annotated sites with WS above a threshold), and
FN is the number of false negatives (i.e. annotated sites scoring below that threshold).

The logic positive control should be the set of sequences that have been used to build the
matri, if we scan this set with the matrix usingmatrix-scanand calculate the invers cumulative
frequency of scores they should show a high scores distribution.
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matrix-qualitycalculates the theoretical score distribution and also thedistribution of scores
on diferent set of sequences.

From RegulonDB we download the set of sites used in the aligment form which the matrix
was generated.

matrix-quality -v 1 -m LexA_matrix.transfac \
-seq matrix_sites LexA.fna \
-bgfile 2nt_upstream-noorf_Escherichia_coli_K_12_sub str__MG1655_uid57779-ovlp-2str.freq.gz
-o matrix-quality_tutorial \
-matrix_format transfac

matrix-qualitygenerates various files, we are going to describe them step bystep in order
to show how they should be interpretate.

Take a view on the graph file matrix-quality_tutorial_score_distrib_compa.png. The blue
line in the graphs is the same theoretical distribution we saw in the previous chapter, now
we can look the distribution of scores for the set of known binding sites, and we can see this
distribution has an important number of positive scores.

However, this matrix is probably over-fitted to these particular sites, since each of them is
in the alignment from which the matrix is derived. For an unbiased estimate of sensitivity,
we would ideally need two separate collections of sites: onefor build-ing the PSSM, another
for testing it. Unfortunately, for most tran-scription factors, very few binding sites are known.
In order to ensure an independent assessment whilst minimizing the loss of information, the
program matrix-quality performs a Leave-One-Out (LOO) validation, iteratively discarding
one annotated site, re-building the matrix, and scoring theleft-out site with the new matrix.
The program also discards multiple copies of identical sites, which would otherwise induce
the same kind of bias.

The LOO curve (green) provides an unbiased estimate of the sensitivity of a matrix, and the
difference with the matrix sites curve indicates the level of over-fitting to the training sites.

11.5 Distribution in full collections of promoters

Matrices are frequently used to predict transcription factor binding sites in genome sequences,
for this what we want to know is the behaviour of the matrix in areal situation.

As a example we will take the complete set of upstream regionsof theE.coli K12 genome.

retrieve-seq -org Escherichia_coli_K_12_substr__MG165 5_uid57779 -tipe upstream \
-all -feattype CDS -noorf \
-o Escherichia_coli_K_12_substr__MG1655_uid57779_ups tream-noorf.fas

With matrix-qualitywe can have the distriution of WSs of the matrix in a given sequence set,
and we will give thsi set to the program with the same command we used for thematrix_sites
set.
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matrix-quality -v 1 -m LexA_matrix.transfac \
-matrix_format transfac \
-seq matrix_sites LexA.fna \
-bgfile 2nt_upstream-noorf_Escherichia_coli_K_12_sub str__MG1655_uid57779-ovlp-2str.freq.gz
-o matrix-quality_tutorial \
-seq allup Escherichia_coli_K_12_substr__MG1655_uid57 779_upstream-noorf.fas

From the previous section we know now the range of WS we should expect from real sites
we know the expected scores are the ones with less frequency,since this might be difficult
to analyze on a normal scale the program gives the same graph with a y-log axis matrix-
quality_tutorial_score_distrib_compa_logy.png

In this graph we can see the light blue line corresponding to the inverse distribution of
scores from thematrix-scansearch over the complete set of upstream regions fromE. coli
K12 genome. At higher weights the curves separate, revealing a small number of sites with a
much higher score than expected by chance (WS>= 9), supposedly corresponding tobona fide
binding sites (see previous section). The abrupt separation between the two curves results in a
plateau-like shape in the high score range, suggesting thatthe matrix efficiently distinguishes
binding sites from the background. Now we need a negative control to probe our statment.

11.6 Negative control with random sequences

An ideal negative control would be a set of sequences where the TF of interest does not bind.
Unfortunately, experimental results of this type are generally not available. An alternative
is to select a random set of promoters, but this could accidentally include some real binding
sites. Another possibility is to generate random sequencesusing some background model (e.g.
Markov chain).

For this we are going to simulate a set ofE. coli K12 upstream regions using 3000 random
sequences of length 2000.

‘

random-seq -l 200 -n 3000 -bg upstream -org Escherichia_col i_K_12_substr__MG1655_uid57779
-o random_seq_upstream_E.coliK12.fas

and we will add this new set to thematrix-qualitycommand.

matrix-quality -v 1 -m LexA_matrix.transfac \
-matrix_format transfac \
-seq matrix_sites LexA.fna \
-bgfile 2nt_upstream-noorf_Escherichia_coli_K_12_sub str__MG1655_uid57779-ovlp-2str.freq.gz
-o matrix-quality_tutorial \
-seq allup Escherichia_coli_K_12_substr__MG1655_uid57 779_upstream-noorf.fas \
-seq random random_seq_upstream_E.coliK12.fas

However, nothing guarantees that Markov chains provide realistic models of biological se-
quences.
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11.7 Negative controls with permuted matrices

To circumvent the common problems to obtain a negative control, matrix-quality supports
an original type of negative controls by scanning input sequences with randomized matrices,
obtained by permuting the columns of the original matrix. This presents the advantage of
preserving important characteristics of the PSSM such as residue composition (sum of each
row), number of sites (sum of any column), total informationcontent, and even the complete
theoretical score distribution (for Bernoulli models).

Now we are going to add a permutation instruction for each of our sequence sets, we will
make 3 permutations of the matrix and scan with this 3 matrices the matrix_sites set, and we
will make 5 permutatios for the other two sets.

matrix-quality -v 1 -m LexA_matrix.transfac \
-matrix_format transfac \
-seq matrix_sites LexA.fna \
-bgfile 2nt_upstream-noorf_Escherichia_coli_K_12_sub str__MG1655_uid57779-ovlp-2str.freq.gz
-o matrix-quality_tutorial \
-seq allup Escherichia_coli_K_12_substr__MG1655_uid57 779_upstream-noorf.fas \
-seq random random_seq_upstream_E.coliK12.fas \
-perm 3 matrix_sites
-perm 5 allup
-perm 5 random

We scanned all the promoters ofE. coli using 5 randomized versions of the matrix (in total,
5Mb of sequences were scanned on both strands). The cyan curve closely follows the blue
curve for low scores (weight <= 7), without showing any separation at high scores. This
confirms that the plateau observed for the original non-permuted matrix corresponds to sites
specifically found in the genome by this matrix.

The column-permuted distribution can be considered an empirical estimate of the FPR.
This distribution is however estimated from scanning a few Mb of sequences, and its precision
is thereby limited. To combine the advantages of theoretical and empirical FPR curves, we
propose the following strategy: (1) scan a representative set of biological sequences with
column-permuted matrices; (2) if the results fit the theoretical distribution, use the latter to
estimate the P-value of predicted sites.

11.8 ROC curves indicate the trade-off between
sensitivity and false positive rate

We still have tow output figures we have not described yet.
The Receiver Operating Characteristic (ROC) curve is a standard representation of the trade-

off between False Positive Rate (FPR) and sensitivity. You cansee the ROC curve displayed
for each distribution of scores in the figure matrix-quality_tutorial_score_distrib_compa_roc.png

However, the risk of false positive applies to every position of the scanned sequences. Even
with an apparently low FPR, the actual number of FP can be very high when scanning a
genome. For example, the E. coli promoters scanned on both strands represent more than
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1 million scored positions, so that an FPR of 0.001 would return 1,159 FP on all E. coli
promoters. Consequently, regular ROC curves are of no use forestimating the discriminatory
power of a matrix. For the same reason, the Area Under the Curve(AUC), classically used to
assess the quality of ROC curves, is ineffective. Indeed, this area is obtained by integrating
the sensitiv-ity over the full range of FPR from 0 to 1, yet genome-wide predictions performed
with an FPR of 90%, 50%, 10% or even 1% are not useful.

To emphasize the lower, more relevant, range of FPR, we draw ROC curves with a loga-
rithmic abscissa ( matrix-quality_tutorial_score_distrib_compa_roc_xylog.png), emphasiz-
ing the smaller FPR values. For example, for TrpR, we estimatethat 70% sensitivity can be
reached at a cost of 1 FP per Mb. Note that given the LOO procedure, our estimate of sensi-
tivity is unbiased, but it is based only on five non-redundantsites, thus being of questionable
robustness (it could change if new binding sites become available).

For the LexA matrix, built from 23 binding sites, the ROC curves shows a gradual increase:
for a sensitivity of 50%, the expected FPR remains reasonably low (FPR0.5 = 1.3x10−5),
whereas collect-ing 90% of the sites would include almost 1FP per 100bp (FPR0.9= 8.3x10−3).
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12 Generating random sequences

Th programrandom-seqallows to generate random sequences wih different random models.
It supports Bernoulli models (independence between successive residues) and Markov mod-

els of any order. Markov models are generally more suitable to represent biological sequences.
We will briely illustrate different ways to use this program.

12.1 Sequences with identically and independently
distributed (IID) nucleotides

random-seq -l 200 -n 20 -o rand_L200_N20.fasta

We can now check th residue cmposition of this random sequence.

oligo-analysis -v 1 \
-i rand_L200_N20.fasta \
-l 1 -1str -return occ,freq \
-o rand_L200_N20_1nt-1str.tab

12.2 Sequences with nucleotide-specific frequencies

In general, the residue composition of biological sequences is biased. We can impose residue-
specific probabilities for the random sequence generation.

random-seq -l 200 -n 20 -a a:t 0.3 c:g 0.2 \
-o rand_L200_N20_at30.fasta

oligo-analysis -v 1 \
-i rand_L200_N20_at30.fasta \
-l 1 -1str -return occ,freq \
-o rand_L200_N20_at30_1nt-1str.tab

12.3 Markov chain-based random sequences

The random generatorrandom-seq supports Markov chains of any order (as far as the cor-
responding ferquency table has previously been calculated). The Markov model is specified
by indicating an oligonucleotide frequency table. The table of oligonucleotides of lengthk
is automatically converted in a transition table of orderm= k− 1 duing the execution of
random-seq.
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random-seq -l 200 -n 20 \
-expfreq $RSAT/data/genomes/Escherichia_coli_K_12_su bstr__MG1655_uid57779/oligo-frequencies/3nt_upstrea m-noo
-o rand_L200_N20_mkv2.fasta

A simpler way to obtain organism-specific Markov models is touse the options-bg and
-org of random-seq.

## This command generates random sequences with a Markov mod el of order 2,
## calibrated on all the non-coding upstream sequences of E. coli.
random-seq -l 200 -n 20 \

-org Escherichia_coli_K_12_substr__MG1655_uid57779 -b g upstream-noorf -ol 3 \
-o rand_L200_N20_mkv2.fasta
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13 Pattern comparisons

TO BE WRITTEN

13.1 Comparing patterns with patterns

compare-patterns

13.2 Comparing discovered patterns wirth a library of
TF-binding consensus

Let us suppose that we dispose of a collection of experimentally characterized binding con-
sensus for the organism of interest, in a file calledknown_consensus.pat.

compare-patterns -v 1 \
-file1 dyads.tab \
-file2 RegulonDB_sites.tab \
-return weight,offset,strand,length,Pval,Eval_p,sig_ p,Eval_f,sig_f,id,seq \
-2str -lth weight 6 \
-o dyads_vs_RegulonDB.tab
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14 Comparing classes, sets and
clusters

TO BE WRITTEN
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15 Comparative genomics

15.1 Genome-wise comparison of protein sequences

In this section, we explain how to use the programgenome-blast, which runs the sequence
similarity search programBLAST to detect significant similarities between all the proteinsof
a set of genomes.

This operation can take time, and the result tables occupy a considerable amount of space
on the hard disk. For this reason, theRSATdistribution does thus not include the complete
comparison of all genomes against all other ones, but is restricted to some model genomes
(Escherchia coli K12versus all bacteria,Saccharomyces cerevisiaeagainst all Fungi, ...).

Depending on your organism of interest, you might wish to perform additional comparisons
for your own purpose. In this section, we explain how to compute the similiraty tables between
a query organism (e.g.Mycoplasma pneumoniae) and a reference taxon (e.g. all Bacteria).

In order to install the tables of similarities between gene products inRSAT , you need
writing permissions in the directory $RSAT/data. If this is not the case, ask your system
administrator to do it for you.

15.1.1 Applying genome-blast between two genomes

As a first test, we will usegenome-blastto compare all the gene products (proteins) of a
query organism (e.g.Mycoplasma pneumoniae) against all the gene products of a reference
organism (e.g.Bacillus subtilis).

This protocol assumes that the two organisms are already installed on yourRSATsite, as
explained in the installation guide.

We will perform in two steps:

1. Use the programformatdb (which is part of theBLAST distribution) to create a
BLAST-formatted structure (the “database”) with all proteins of the reference organ-
ism (Bacillus subtilis).

2. Use the programblastall (part of theBLAST distribution) to detect similarities be-
tween each protein of the query organism (Mycoplasma pneumoniae) and the reference
organism.

Formatting the BLAST DB

This DB formatting step is very efficient, it should be completed in a few seconds.
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genome-blast -v 1 -task formatdb \
-q Mycoplasma_pneumoniae \
-db Bacillus_subtilis

The result is found in the data directory containingBacillus subtilis. A new directoryblastdb
has been created, which contains the BLAST-formatted database with all the proteins of the
reference organism.

ls -ltr $RSAT/data/genomes/Bacillus_subtilis/blastdb

These are binary files, that you should in principle not open as such.

Searching similarities

The programblastall compares all the sequences of an input set against all the sequences
of a database (the one we just created above). The programgenome-blastgenerates the
appropriateblastall command to find the BLAST database directory, and query it withthe
proteins of the query organism.

genome-blast -v 1 -task blastall \
-q Mycoplasma_pneumoniae \

-db Bacillus_subtilis

This task takes a bit less that one minute forMycoplasma pneumoniae(because we chose
a very small genomes), and can take around 10 minutes for medium-sized bacterial genomes
( 4,000 genes).

Note that theblastall command is written in the verbosity message. If you have specific
reasons to customize this command, you can adapt it to apply different parameters.

Searching reciprocal similarities

One classical orthology criterion (which is not perfect buthas practical advantages) is to select
the bidirectional best hits as candidate orthologs.

For this, we need to run the reciprocal blast, i.e. usingBacillus subtilisas query organism,
andMycoplasma genitaliumas reference organism.

Note that you can run the two BLAST commands (formatdb andblastall ) in a single shot,
by specifying multiple tasks forgenome-blast.

genome-blast -v 1 -task formatdb,blastall \
-q Bacillus_subtilis \
-db Mycoplasma_pneumoniae

We can now perform a quick test: select the bidirectional best hit (-rank 1) for the gene
NP_109706.1.

get-orthologs -q NP_109706.1 -uth rank 1 -return all \
-org Mycoplasma_pneumoniae -taxon Bacillus_subtilis
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15.1.2 Applying genome-blast between a genome and a taxon

Generally, we want to compare a query organism to all the organisms of a given taxon (the
reference taxon). This can be done with the option-dbtaxon.

As an example, we will BLAST all the proteins ofMycoplasma pneumoniaeagainst all the
proteins of each species ofMollicutes.

We can also use the option-reciprocal to activate the reciprocal search: BLAST all gene
products of each bacteria of the reference taxonMollicutesagainst those of the query organism
Mycoplasma pneumoniae.

genome-blast -v 1 -task formatdb,blastall -reciprocal \
-q Mycoplasma_pneumoniae \
-dbtaxon Mollicutes

We can now retrieve the orthologs of aMycoplasma pneumoniaegene (e.g.NP_109706.1)
in all Mollicutes.

get-orthologs -q NP_109706.1 -uth rank 1 -return all \
-org Mycoplasma_pneumoniae -taxon Mollicutes

15.2 Getting putative homologs, orthologs and
paralogs

In this section, I will explain how to use the programget-orthologs. This program takes
as input one or several query genes belonging to a given organism (thereference organism),
and return the genes whose product (peptidic sequence) showsignificant similarities with the
products of the query genes. The primary usage ofget-orthologs is thus to return lists of
similar genes, not specialy orthologs. Additional criteria can be imposed to infer orthology.
In particular, one of the most common criterion is to selectbidirectional best hits (BBH). This
can be achieved by imposing the rank 1 with the option-uth rank 1.

We will illustrate the concept by retrieving the genes whoseproduct is similar to the protein
LexA of Escherichia coli K12, in all the Enterobacteriales. We will then refine the query to
extract putative orthologs.

15.2.1 Getting genes by similarities
get-orthologs -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 \

-taxon Enterobacteriales \
-q lexA -o lexA_all_hits_Enterobacteriales.tab

The result file is a list of all the Enterobacteriales genes whose product shows some simi-
larity with the LexA protein from E.coli K12.

...
#ref_id ref_org query
Sde_1787 Saccharophagus_degradans_2-40 b4043
CPS_0237 Colwellia_psychrerythraea_34H b4043
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CPS_2683 Colwellia_psychrerythraea_34H b4043
CPS_1635 Colwellia_psychrerythraea_34H b4043
IL0262 Idiomarina_loihiensis_L2TR b4043
...
c5014 Escherichia_coli_CFT073 b4043
c3190 Escherichia_coli_CFT073 b4043
b4043 Escherichia_coli_K_12_substr__MG1655_uid57779 b 4043
...

Each similarity is reported by the ID of the gene, the organism to which is belong, and the
ID of the query gene. In this case, the third column contains the same ID on all lines: b4043,
which is the ID of the gene lexA inEscherichia coli K12. It seems thus poorly informative,
but this column becomes useful when several queries are submitted simultaneously.

15.2.2 Obtaining information on the BLAST hits

The programget-orthologs allows to return additional information on the hits. The list of
supported return fields is obtained by calling the command with the option-help. For example,
we can ask to return the percentage of identity, the alignment length, the E-value and the rank
of each hit.

get-orthologs -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 \
-taxon Enterobacteriales \
-q lexA -return ident,ali_len,e_value,rank \
-o lexA_all_hits_Enterobacteriales.tab \

Which gives the following result:

...
#ref_id ref_org query ident ali_len e_value rank
Sde_1787 Saccharophagus_degradans_2-40 b4043 65.33 199 1 e-68 1
CPS_0237 Colwellia_psychrerythraea_34H b4043 65.69 204 6 e-75 1
CPS_2683 Colwellia_psychrerythraea_34H b4043 33.94 109 1 e-10 2
CPS_1635 Colwellia_psychrerythraea_34H b4043 34.12 85 1e -06 3
IL0262 Idiomarina_loihiensis_L2TR b4043 66.83 202 1e-75 1
...
c5014 Escherichia_coli_CFT073 b4043 100.00 202 2e-111 1
c3190 Escherichia_coli_CFT073 b4043 43.33 90 2e-14 2
b4043 Escherichia_coli_K_12_substr__MG1655_uid57779 b 4043 100.00 202 2e-111 1
...

Not surprisingly, the answer includes the self-match of lexA (ID b4043) inEscherichia coli
K12, with 100% of identify.

15.2.3 Selecting bidirectional best hits

We can see that the output contains several matches per genome. For instance, there are 3
matches inColwellia psychrerythraea 34H. If we assume that these similarities reflect ho-
mologies, the result contains thus a combination of paralogs and orthologs.

The simplest criterion to select ortholog is that ofbidirectional best hit (BBH). We can
select BBH by imposing an upper threshold on the rank, with the option -uth.
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get-orthologs -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 \
-taxon Enterobacteriales \
-q lexA -return ident,ali_len,e_value,rank \
-uth rank 1 \
-o lexA_best_hits_Enterobacteriales_bbh.tab

The result has now been reduced to admit at most one hit per genome.

...
#ref_id ref_org query ident ali_len e_value rank
Sde_1787 Saccharophagus_degradans_2-40 b4043 65.33 199 1 e-68 1
CPS_0237 Colwellia_psychrerythraea_34H b4043 65.69 204 6 e-75 1
IL0262 Idiomarina_loihiensis_L2TR b4043 66.83 202 1e-75 1
...
c5014 Escherichia_coli_CFT073 b4043 100.00 202 2e-111 1
b4043 Escherichia_coli_K_12_substr__MG1655_uid57779 b 4043 100.00 202 2e-111 1
...

15.2.4 Selecting hits with more stringent criteria

It is well known that the sole criterion of BBH is not sufficient to infer orthology between two
genes. In particular, there is a risk to obtain irrelevant matches, due to partial matches between
a protein and some spurious domains. To avoid this, we can adda constraint on the percentage
of identity (min 30%), and on the alignment length (min 50 aa). These limits are somewhat
arbitrary, we use them to illustrate the principe, and leaveto each user the responsibility to
choose the criteria that she/he considers as relevant. Finally, we will use a more stringent
threshold on E-value than the default one, by imposing an upper threshold of 1e-10.

## Note that or this test we suppress the BBH constraint (-uth rank 1)
get-orthologs -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 \

-taxon Enterobacteriales \
-q lexA \
-return ident,ali_len,e_value,rank \
-lth ident 30 -lth ali_len 50 -uth e_value 1e-10 \
-o lexA_filtered_hits_Enterobacteriales_id30_len50_e val-10.tab

We can now combine the constrains above with the criterion ofBBH.

## Note that or this test we include the BBH constraint (-uth r ank 1)
get-orthologs -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 \

-taxon Enterobacteriales \
-q lexA \
-return ident,ali_len,e_value,rank \
-lth ident 30 -lth ali_len 50 -uth e_value 1e-10 \
-uth rank 1 \
-o lexA_BBH_Enterobacteriales_bbh_id30_len50_eval-10 .tab

As expected, the number of selected hits is reduced by addingthese constraints. In Sept
2006, we obtained the following number of hits for lexA in Enterobacteriales.

• 122 hits without any constraint;
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• 107 hits with contrains on ident,ali_len and e_value;

• 69 hits with the constraint of BBH;

• 69 hits with the combined constraint of BBH, at least 30% identity and an alignment
over more than 50 aminoacids, and an E-value <= 1.e-10.

Actually, in the particular case oflexA, the BBH constraint already filtered out the spurious
matches, but inother cases they can be useful.

15.2.5 Restricting the number of reference organisms

The decrease of sequencing cost impulsed the multiplication of genome sequencing projects.
In 2015, some bacterial species are represented by several hundreds of strains in the Ensem-
blGenomes database (e.g.Escherichia coli). A conseuence is that the comparative genomics
analyses can become quite heavy. A more importance drawbackis that some taxonomic
branches are over-represented relative to other ones.

To reduce this problem, we added an option-depth to the taxonomic tools.

## Note that or this test we include the BBH constraint (-uth r ank 1)
get-orthologs -v 1 -org Escherichia_coli_K_12_substr__M G1655_uid57779 \

-taxon Enterobacteriales \
-q lexA -o lexA_orthologs_Enterobacteriales_bbh_id30_l en50_eval-10.tab \
-return ident,ali_len,e_value,rank \
-lth ident 30 -lth ali_len 50 -uth e_value 1e-10 \
-uth rank 1

15.3 Retrieving sequences for multiple organisms

The programretrieve-seq-multigenomecan be used to retrieve sequences for a group of
genes belonging to different organisms.This program takesas input a file with two columns.
Each row of this file specifies one query gene.

1. The first column contains the name or identifier of the gene (exactly as for the single-
genome programretrieve-seq).

2. The second column indicates the organism to which the gne belongs.

The output ofget-orthologscan thus directly be used as input forretrieve-seq-multigenome.

retrieve-seq-multigenome -noorf \
-i lexA_orthologs_Enterobacteriales_bbh_id30_len50_e val-10.tab \
-o lexA_orthologs_Enterobacteriales_up-noorf.fasta

\end{footnotesize}
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15.4 Detection of phylogenetic footprints

TO BE WRITTEN

dyad-analysis -v 1 \
-i lexA_orthologs_Enterobacteriales_up-noorf.fasta \
-sort -2str -noov -lth occ 1 -lth occ_sig 0 \
-return occ,freq,proba,rank \
-l 3 -spacing 0-20 -bg monads \
-o lexA_orthologs_Enterobacteriales_up-noorf_dyads-2 str-noov.tab

15.5 Phylogenetic profiles

The notion ofphylogenetic profilewas introduced by Pellegrini et al. (1999). They identi-
fied putative orthologs for all the genes ofEscherichia coli K12in all the complete genomes
available at that time, and built a table with one row per gene, one column per genome. Each
cell of this table indicates if an ortholog of the consideredgene (row) has been identified in
the considered genome (column). Pellegrini et al. (1999) showed that genes having similar
phylogenetic profiles are generally involved in common biological processes. The analysis
of phylogenetic profiles is thus a powerful way to identify functional grouping in completely
sequenced genomes.

The programget-orthologscan be used to obtain the phylogenetic profiles. The principle
is to submit the complete list of protein-coding genes of thequery organism. We process in
two steps :

1. With get-orthologs, we can identify the putative ortholgos for all the genes of the query
organism, using the criterion ofbidirectional best hit (BBH). This generate a large table
with one row per pair of putative orthologs.

2. We then useconvert-classesto convert the ortholog table into profiles (one row per
gene, one column per genome).

We will illustrate this by calculating the phylogenetic profiles of all the genes fromSac-
charomyces cerevisiaeacross all the Fungi. We use a level of verbosity of 2, in orderto get
information about the progress of the calculations.

## Identify all the putative orthologs (BBH)
get-orthologs -v 2 \

-i $RSAT/data/genomes/Saccharomyces_cerevisiae/genom e/cds.tab \
-org Saccharomyces_cerevisiae \
-taxon Fungi \
-uth rank 1 -lth ali_len 50 -lth ident 30 -uth e_value 1e-10 \
-return e_value,bit_sc,ident,ali_len \
-o Saccharomyces_cerevisiae_vs_Fungi_bbh.tab

## Convert ortholog table into a profile table
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## with the IDs of the putative orthologs
convert-classes -v 2 \

-i Saccharomyces_cerevisiae_vs_Fungi_bbh.tab \
-from tab -to profiles \
-ccol 2 -mcol 3 -scol 1 -null "<NA>" \
-o Saccharomyces_cerevisiae_vs_Fungi_phyloprofiles_i ds.tab

The resulting table indicates the identifier of the orthologgenes. The option-null was used
to specify that the string<NA>should be used to indicate the absence of putative orhtolog.

Another option would be to obtain a “quantitative” profile, where each cell indicates the
E-value of the match between the two orthologs. This can be done by specifying a different
score column with the option-scol of convert-classes.

## Convert ortholog table into a profile table
## with the E-value of the putative orthologs
convert-classes -v 2 \

-i Saccharomyces_cerevisiae_vs_Fungi_bbh.tab \
-from tab -to profiles \
-ccol 2 -mcol 3 -scol 4 -null "<NA>" \
-o Saccharomyces_cerevisiae_vs_Fungi_phyloprofiles_e value.tab

15.6 Detecting pairs of genes with similar
phylogenetic profiles

In the previous section, we generated tables indicating thephylogenetic profiles of each gene
from Saccharomyces cerevisiae. This table contains one row per gene, and one column per
fungal genome.

We will now use the programcompare-profilesto compare each gene profile to each other,
to select the pairs of genes with significantly similar profiles. The problem is of course to
choose our criterion of similarity between two gene profiles.

15.6.1 Comparing binary profiles with compare-profiles

For the binary profiles, the most relevant statistics is thehypergeometric significance.

## Compare the binary phylogenetic profiles
## using the hypergeometric significance
compare-profiles -v 2 \

-i Saccharomyces_cerevisiae_vs_Fungi_phyloprofiles_e value.tab \
-lth AB 1 -lth sig 0 \
-return counts,jaccard,hyper,entropy \
-o Saccharomyces_cerevisiae_vs_Fungi_phyloprof_gene_ pairs.tab

In the previous commands, we set the verbosity to 2, in order to keep track the progress of
the task. Actually, the processing can take a few minuts, it is probably the good moment for a
coffee break.
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15.6.2 Comparing binary profiles with compare-classes

Another way to compare the phylogenetic profiles is to directly analyze withcompare-classes
the table of orthology (previously obtained fromget-orthologs).

This is just another way of considering the same problem: in order to compare genesA and
B, we will consider as a first class (Q) the set of genomes in which geneA is present, and as
a second class (R) the set of genomes in which geneB is present. We will then calculate the
intersection between these two classes, and assess the significance of this intersection, given
the total number of genomes.

Thus,compare-classeswill calculate the hypergeometric statistics, exactly in the same way
ascompare-profiles.

## Convert the orthology into "classes", where each class (s econd column)
## corresponds to a gene from Saccharomyces cerevisiae, and indicates
## the set of genomes (first column) in which this gene is pres ent.
convert-classes -from tab -to tab -mcol 2 -ccol 3 -scol 5 \

-i Saccharomyces_cerevisiae_vs_Fungi_bbh.tab \
-o Saccharomyces_cerevisiae_vs_Fungi_bbh_classes.tab

## Compare the classes to detect significant overlaps
compare-classes -v 3 \

-i Saccharomyces_cerevisiae_vs_Fungi_bbh_classes.tab \
-lth QR 1 -lth sig 0 -sort sig -sc 3 \
-return occ,proba,dotprod,jac_sim,rank \
-o phyloprof_gene_pairs.tab
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16 Automated analysis of multiple
gene clusters

The main interest of usingRSAT from the shell is that it allows to automatize the analysis of
multiple data sets. The different programs of the package can be combined in different ways to
apply an extensive analysis of your data. A typical example is the analysis of clusters obtained
from gene expression data.

When a few tens or hundreds of gene clusters have to be analyzed, it becomes impossible
to manage it manually.RSAT includes a program,multiple-family-analysis, which takes as
input a file with the composition of gene clusters (thecluster file), and automatically performs
the following analyses on each cluster :

directory management: the results are stored in a separate directory for each cluster. Di-
rectories are automatically created during the execution,and bear the name of the cluster.

sequence retrieval: upstream sequences are retrieved and stored in fasta format

sequence purging: upstream sequences are purged (with the programpurge-sequences
to remove redundant fragments. Purged sequences are then used for pattern discovery,
and non-purged sequences for pattern matching.

oligonucleotide analysis: the programoligo-analysis is used to detect over-represented
oligonucleotides.dna-pattern andfeature-map are used to draw a feature map of the
significant patterns.

dyad analysis: the programdyad-analysisis used to detect over-represented oligonucleotides.
dna-pattern andfeature-map are used to draw a feature map of the significant patterns.

other pattern discovery programs: several matrix-based pattern discovery programs de-
veloped by other teams can be managed bymultiple-family-analysis. These programs
have to be installed separately they are not part of theRSATdistribution).

feature map drawing: The patterns discovered by the different programs are matched against
the upsteram sequences, and the result is displayed as a feature map.

synthesis of the results: A synthetic table is generated (in HTML format) to facilitate the
analysis of the results, and the navigation between result files.

result export: The results can be exported to tab-delimited files, which canthen automati-
cally be loaded in a relational database (mySQL, PostgreSQLor Oracle).
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In addition to this cluster-per-cluster analysis, resultsare summarized in two format.

synthetic table A HTML table is generated with one row per cluster, and a summary of the
results (gene composition, significant oligonucleotides,significant dyads). This table
contains links to the feature maps, making it easy to browse the results.

sql table The list of significant patterns detected in all the cluster are compiled in a single
result table (a tab-delimited text file), with one row per pattern and cluster, and one
column per criterion (pattern type, occurrences, significance, ...).

The program also automatically exports SQL scripts which allow to create the appropri-
ate table in a relational database management system (RDBMS) and load the data.

16.1 Input format

The input format is a tab-delimited text file with two columns, providing respectively :

1. gene identifier or name

2. cluster name

An example of cluster file is displayed in Table16.1. This file describes 3 yeast regulons,
each responding to some specific environmental condition: the NIT family contains 7 genes
expressed under nitrogen depletion, the PHO family 5 genes expressed under phosphate stress,
and the MET family 11 genes expressed when methionine is absent fom the culture medium.

Beware: the columns must be separate by tabulations, spaces are not valid separators.
Note that genes can be specified either by their name (as for the NIT and PHO families in

Table16.1), or by their systematic identifier (MET family in Table16.1).

16.2 Example of utilization

Let us assume that the file displayed in Table16.1has been saved under the nametest.fam.
The following command will automatically perform all the analyses.

multiple-family-analysis -i test.fam -v 1 \
-org Saccharomyces_cerevisiae \
-2str -noorf -noov \
-task upstream,purge,oligos,oligo_maps,synthesis,sql,clean \
-outdir test_fam_results

Once the analysis is finished, you can open the foldersynthetic_tableswith aweb browser
and follow the links.
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; gene cluster
DAL5 NIT
GAP1 NIT
MEP1 NIT
MEP2 NIT
MEP3 NIT
PUT4 NIT
DAL80 NIT
PHO5 PHO
PHO11 PHO
PHO8 PHO
PHO84 PHO
PHO81 PHO
YDR502C MET
YER091C MET
YHL036W MET
YIL046W MET
YJR010W MET
YKL001C MET
YKR069W MET
YLR180W MET
YLR303W MET
YNL241C MET
YNL277W MET

Table 16.1: Example of family file.
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16.3 Loading the results in a relational database

The results were exported in tab-delimited text files in the directorytest_fam_results/sql_export/.
This directory contains 3 files and one subdirectory :

Family_genes.tab
Family.tab
Pattern.tab
sql_scripts/

The subdirectorysql_scriptscontains several SQL scripts for creating tables in a relational
database management system (RDBMS), loading data into these tables, and dropping these
tables when you don’t need them anymore.

family_genes_table_load.ctl
family.mk
family_table_create.sql
family_table_drop.sql
family_table_load.ctl
makefile
pattern.mk
pattern_table_create.sql
pattern_table_drop.sql
pattern_table_load.ctl

The file makefile allows you to automatically create the tables and load the data in two
operations.

make create MYSQL=’mysql -u [your login] -D multifam’
make load MYSQL=’mysql -u [your login] -D multifam’

This requires the existence of a database space ’multifam’ in yourRDBMS. If you are not
familar with relational databases, you probably need to contact your system administrator to
create this space for you.

16.4 Comparing programs

The programmultiple-family-analysis allows you to compare the results obtained by differ-
ent pattern discovery programs. Two of these programs are part of the RSATdistribution :
oligo-analysisanddyad-analysis. The other programs have been developed by other teams,
and can be downloaded from their original site. The command below assumes that these
programs were installed and included in your path.
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multiple-family-analysis -i test.fam -v 1 \
-org Saccharomyces_cerevisiae \
-2str -noorf -noov \
-task upstream,purge,oligos,oligo_maps \
-task dyads,dyad_maps,consensus,gibbs \
-task meme,synthesis,sql,clean \
-outdir test_fam_results

Note that you can define multipe tasks either with a single call to the option-task, or by
insering iteratively the option in the command line.

16.5 The negative control: analyzing random gene
selections

An essential quality of pattern discovery programs is theirability to return a negative answer
when there are no specific patterns in a sequence set.

The programrandom-genesallows to select random sets of genes, which can then be used
by multiple-family-analysis to check the rate of false positive of pattern discovery programs.

The simplest way to use random-gene is to ask a set ofn genes:

random-genes -org Saccharomyces_cerevisiae -n 10

You can also use the option-r to selectr distinct sets ofn genes.

random-genes -org Saccharomyces_cerevisiae -n 10 -r 5

Another possibility is to specify a template family file withthe option-fam.

random-genes -org Saccharomyces_cerevisiae -fam test.fam

This will return a family file with the same number of gene family as in the input file
(test.fam). Each output family will contain the same number of gene as the corresponding
input family. This option provides thus a very convenient way to generate a negative control
of exactly the same size as the real family file.

16.6 Analyzing a large set of regulons

To get a better feeling about the potentialities of the different pattern discovery programs, you
can analyze the collection of regulons collected by NicolasSimonis (2004), which is available
at:

http://rsat.ulb.ac.be/rsat/data/published_data/Simo nis_Bioinformatics_2004/
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17 Utilities

17.1 gene-info
gene-infoallows you to get information on one or several genes, given a series ofquery words. Queries
are matched against gene identifiers and gene names. Imperfect matches can be specified by using
regular expressions.

For example, to get all info about the yeast gene GAT1:

gene-info -org Saccharomyces_cerevisiae -q GAT1

And to get all the purine genes fromEscherichia coli, type:

gene-info -org Escherichia_coli_K_12_substr__MG1655_u id57779 -q ’pur. * ’

Note the use of quotes, which is necessary whenever the query containsa *.
You can also combine several queries on the same command line, by using reiteratively the -q option:

gene-info -org Escherichia_coli_K_12_substr__MG1655_u id57779 \
-q ’met. * ’ -q ’thr. * ’ -q ’lys. * ’

17.2 On-the-fly compression/uncompression
All programs fromRSATsupport automatic compression and uncompression of gzip files. This can be
very convenient when dealing with big sequence files.

To compress the result of a query, simply add the extension.gz to the output file name.

retrieve-seq -all -org Saccharomyces_cerevisiae \
-from -1 -to -200 -noorf -format fasta \
-o all_up200.fa.gz

The result file is a compressed archive. Check its size with the command

ls -l

Uncompress the file with the command

gunzip all_up200.fa.gz

The file has now lost the.gz extension. Check the size of the uncompressed file.
Recompress the file with the command

gzip all_up200.fa
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Similarly, you can directly use a compressed archive as input forRSAT , it will be uncompressed on
the fly, without occupying space on the hard drive. For example :

dna-pattern -i all_up200.fa.gz -p GATAAG -c -th 3

will return all the genes having at least three occurrences of the motifGATAAGin their 200 bp
upstream region.
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18 Downloading genomes
RSAT includes a series of tools to install and maintain the latest version of genomes.

The most convenient way to add support for one or several organismson your machine is to use the
programssupported-organismsanddownload-organism.

Beware, the complete data required for a single genome may occupy several hundreds of Mb, be-
causeRSATnot only stores the genome sequence, but also the oligonucleotide frequency tables used
to estimate background models, and the tables of BLAST hits used to get orthologs for comparative
genomics. If you want to install many genomes on your computer, you shouldthus reserve a sufficient
amount of space.

18.1 Original data sources
Genomes supported onRSATwere obtained from various sources.

Genomes can be installed either from theRSATweb site, or from their original sources.

• NCBI/Genbank (ftp://ftp.ncbi.nih.gov/genomes/ ) was the primary source for in-
stalling genomes onRSAT . Genomes are downloaded from the ftp site and installed locally on
theRSATserver by parsing the .gbk files.

• The EBI genome directory (ftp://ftp.ebi.ac.uk/pub/databases/genomes/Eukaryota / )
contains supplementary genomes, which can be downloaded and installed onthe RSATserver
by parsing files in embl format.

• UCSC (http://genome.ucsc.edu/ ) for the multi-genome alingment files (multiz) used
by peak-footprints.

• Since 2008, ENSEMBL (http://www.ensembl.org/ ) genomes are supported by special
tools (retrieve-ensembl-seq, supported-organisms-ensembl), that remotely address queries to
the Ensembl database.

• Since 2013, genomes can be downloaded and installed onRSATservers, using the toolinstall-
ensembl-genome. Once installed, ensembl genomes can be queried with the same tools as the
other genomes installed onRSATservers (retrieve-seq, gene-info, . . . ).

Other genomes can also be found on the web site of a diversity of genome-sequencing centers.

18.2 Requirement : wget
The download of genomes relies on the applicationwget, which is part of linux distribution1.

1For Linux: http://www.gnu.org/software/wget/ ; for Mac OSX
http://download.cnet.com/Wget/3000-18506_4-128268.h tml
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wget is a “web aspirator”, which allows to download whole directories from ftp and http sites. You
can check if the program is installed on your machine.

wget --help

This command should return the help pages forwget. If you obtain an error message (“command
not found”), you need to ask your system administrator to install it.

18.3 Importing organisms from the RSAT main server
The simplest way to install organisms on ourRSATsite is to download the RSAT-formatted files from
the web server. For this, you can use a web aspirator (for example the programwget).

Beware, the full installation (including Mammals) requires a large disk space (several dozens of Gb).
You should better start installting a small genome and test it before processing to the full installation.
We illustrate the approach with the genome of our preferred model organism:the yeastSaccharomyces
cerevisiae.

18.3.1 Obtaining the list of organisms supported on the
RSAT server

By default, the programsupported-organismsreturns the list of organisms supported on your local
RSAT installation. You can however use the option-serverto obtain the list of organisms supported on
a remote server.

supported-organisms-server

The command can be refined by restricting the list to a given taxon of interest.

supported-organisms-server -taxon Fungi

You can also ask additional information, for example the date of the last update and the source of
each genome.

supported-organisms-server -taxon Fungi -return last_up date,source,ID

18.3.2 Importing a single organism
The command

download-organism

allows you to download one or several organisms.
Beware, the complete data for a single genome may occupy several tens of Megabytes (Bacterial

genomes) or a few Gigabases (Mammalian). Downloading tenomes thus requires a fast Internet con-
nection, and may take time. If possible, please download genomes during the night (European time).

As a first step, we recommend to download the genome of the yeastSaccharomyces cerevisiae, since
this is the model organism used in our tutorials.

download-organism -v 1 -org Saccharomyces_cerevisiae
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In principle, the download should start immediately.Beware, the data volume to be downloaded is
important, because the genome comes together with extra files (blast hits with other genoems, oligonu-
cleotide and dyad frequencies). Depending on the network bandwidth, the download of a genome may
take several minutes or tens of minutes.

After the task is completed, you can check if the configuration file has been correctly updated by
typing the command.

supported-organisms

In principle, the following information should be displayed on your terminal.

Saccharomyces_cerevisiae

You can also add parameters to get specific information on the supported organisms.

supported-organisms -return ID,last_update

18.3.3 Importing a few selected organisms
The programdownload-organism can be launched with a list of organisms by using iteratively the
option-org.

download-organism -v 1 -org Escherichia_coli_K_12_subst r__MG1655_uid57779 \
-org Mycoplasma_genitalium_G37_uid57707

Note: genome names may change with time, since genome centers are occasionally adding new
suffixes for genomes. The organism names indicated after the option-org should belong to the list of
supported organisms collected with the commandsupported-organisms -server.

18.3.4 Importing all the organisms from a given taxon
For comparative genomics, it is convenient to install on your server all theorganisms of a given taxon.
For this, you can simply use the option-taxonof download-organism.

Before doing this, it is wise to check the number of genomes that belong to this taxon on the server.

## Get the list of organisms belonging to the order "Enteroba cteriales" on the server
supported-organisms -taxon Enterobacteriales -server

## Count the number of organisms
supported-organisms -taxon Enterobacteriales -server | w c -l

In Dec 2013, there are 203 Enterobacteriales supported on theRSATserver. Before starting the
download, you should check two things:

1. Has your network a sufficient bandwidth to ensure the transfer in a reasonable time ?

2. Do you have enough free space on your hard drive to store all those genomes ?

If the answer to both questions is “yes”, you can start the download.

download-organism -v 1 -taxon Enterobacteriales
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19 Installing additional genomes on
your machine

The easiest way to install genomes on your machine is to download them from the mainRSATserver,
as indicated in the Chapter “Downloading genomes” (Chap.18of the installation guide).

In some cases, you may however wish to install a genome by yourself, because this genome is not
supported on the mainRSATserver. For this, you can use the programs that we use to install new
genomes on the mainRSATserver.

19.1 Adding support for Ensembl genomes
In addition to the genomes imported and maintained on your localRSATserver, the programretrieve-
ensembl-seqallows you to retrieve sequences for any organism supported in the Ensembl database
(http://ensembl.org ).

For this, you first need to install the Bioperl and Ensembl Perl libraries (see section??).

19.1.1 Handling genomes from Ensembl
The first step to work with Ensembl genomes is to check the list of organisms currently supported on
their Web server.

supported-organisms-ensembl

You can then get more precise information about a given organism (build, chromosomes) with the
commandensembl-org-info.

ensembl-org-info -org Drosophila_melanogaster

Sequences can be retrieved from Ensembl with the commandretrieve-ensembl-seq.
You can for example retrieve the 2kb sequence upstream of the transcription start site of the gene

PAX6 of the mouse.

retrieve-ensembl-seq.pl -org Mus_musculus -q PAX6 \
-type upstream -feattype mrna -from -2000 -to -1 -nogene -rm \
-alltranscripts -uniqseqs

Options

• -type upstreamspecifies that we want to collect the sequences located upstream of the gene
(more procisely, upstream of the mRNA).

• -feattype mrnaindicates that the reference for computing coordinates is the mRNA. Since we
collect upstream sequences, the 5’most position of the mRNA has coordinate 0, and upstream
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sequences have negative coordinates. Note that many genes are annotated with multiple RNAs
for different reasons (alternative splicing, alternative transcription start sites). By default, the
program will return the sequences upstream of each mRNA annotated forthe query gene.

• -nogeneclip the sequences to avoid overlapping the next upstream gene.

• -rm repeat masking (important for pattern discovery). Repetitive sequences are replaced byN
characters.
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19.2 Installing genomes and variations from EnsEMBL
??

RSAT includes a series of programs to download and install genomes from Ensembl.

1. install-ensembl-genomeis a wrapper enabling to autmoatize the download (genome sequences,
features, variations) and configuration tasks.

2. download-ensembl-genomedownloads the genomics sequences and converts them in the raw
format required forRSAT .

3. download-ensembl-featuresdownloads tab-delimited text files describing genomic features
(transcripts, CDS, genes, . . . ).

4. download-ensembl-variationsdownloads tab-delimited text files describing genomic varia-
tions (polymorphism).

19.2.1 Installing genomes from Ensembl
The programinstall-ensembl-genomemanages all the required steps to download and install a genome
(sequence, features, and optionally variations) from Ensembl toRSAT .

It performs the following tasks:

1. The option-task genomeruns the programdownload-ensembl-genometo download the com-
plete genomic sequence of a given organism from theEnsEMBL Web site, and formats it ac-
cording toRSAT requirements (conversion from the original fasta sequence file to one fileper
chromosome, in raw format).

2. The option-task featuresrunsdownload-ensembl-featuresto download the positions and de-
scriptions of genomic features (genes, CDS, mRNAs, ...).

3. Optionally, when the option-task variationsis activated, rundownload-ensembl-variations
to download the description of genomic variations (polymorphism). Note that variations are
supported only for a subset of genomes.

4. UpdateRSATconfiguration (-task config) to make the genome available to other programs in
the currentRSATsite.

5. Run the additional tasks (-task install) required to have a fully functional genome on the local
RSATsite: compute genomic statisics (intergenic sizes, . . . ) and background models (oligonu-
cleotide and dyad frequencies).

6. With the option-available_species, the program returns the list species available on the Ensembl
server, together with their status of availability for the 3 data types (genome sequence, features,
variations). When this option is called, the program does not install any genome.

The detailed description of the program and the list of options can be obtainedwith the option-help.

## Get the description of the program + all options
install-ensembl-genome -help
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Getting the list of available genomes

Before installing a genome, it is generally a good idea to know which genomes are available. For this,
use the option-available_species.

## Retrieve the list of supported species on EnsEMBL
install-ensembl-genome -v 1 -available_species \

-o available_species_ensembl.tab

## Read the result file
more available_species_ensembl.tab

Note: inter-individual variations are available for a subset only of the genomesavailable inEn-
sEMBL . The option-available_speciesindicates, for each species, the availability (genome, features,
variations). Obviously, the programs to analyse regulatory variations (convert-variations, retrieve-
variation-seq, variation-scan) are working only for the genomes documented with variations.

Installing a genome from Ensembl

We can now download and install the complete genomic sequence for the species of our choice. For
the sake of space and time economy, we will use a small genome for this manual: the budding yeast
Saccharomyces cerevisiae.

Beware: some installation steps take a lot of time. For large genomes (e.g. Vertebrate organisms), the
full installation can thus take several hours. This should in principle not bea big issue, since installing
a genome is not a daily task, but it is worth knowing that the whole process requires a continuous
connection during several hours.

## Install the genome sequences for a selected organism
install-ensembl-genome -v 2 -species Saccharomyces_cere visiae

This command will automatically run all the installation tasks described above, except the installa-
tion of variations (see Section19.2.3).

19.2.2 Installing genomes from EnsemblGenomes
The historicalEnsEMBL project1 was focused on vertebrate genomes + a few model organisms (Sac-
charomyces cerevisiae, Drosophila melanogaster, . . . ).

A more recent project calledEnsemblGenomes2 extends theEnsEMBL project to a wider taxo-
nomic range (in Oct 2014, there are >15,000 genomes available at EnsemblGenomes, where as En-
sembl only provides 69 genomes).

The programinstall-ensembl-genomesupports the installation of genomes fromEnsEMBL as well
asEnsemblGenomes. By default, it opens a connection to the historicalEnsEMBL database, but the
option-db ensemblgenomesenables to install genomes from the new projectEnsemblGenomes.

## Get the list of available species from the extended projec t
## EnsemblGenomes
install-ensembl-genome -v 2 -available_species -db ensem blgenomes \

-o available_species_at_EnsemblGenome.txt

1http://www.ensembl.org/
2http://ensemblgenomes.org/
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You can then identify your genome of interest in the fileavailable_species_at_EnsemblGenome.txt,
and start the installation (don’t forget the option-db ensemblgenomes.

## Install Escherichia coli (strain K12 MG1665) from Ensemb lGenomes
install-ensembl-genome -v 2 -db ensemblgenomes \

-species Escherichia_coli_str_k_12_substr_mg1655

19.2.3 Downloading variations
The programdownload-ensembl-variationsdownloads variations from theEnsEMBL Web site, and
installs it on the localRSATsite.

This program relies onwget, which must be installed beforehand on your computer.

## Retrieve the list of supported species in the EnsEMBL vari ation database
download-ensembl-variations -v 1 -available_species

We can now download all the variations available for the yeast.

## Download all variations for a selected organism on your se rver
download-ensembl-variations -v 1 -species Saccharomyces _cerevisiae

Variation files are stored in a specific subfolder for the specified organism.

## Check the content of the variation directory for the yeast
make -f makefiles/variation-scan_demo.mk \

SPECIES=Saccharomyces_cerevisiae ASSEMBLY=R64-1-1 \
variation_stats

This command will indicate the location of the variation directory on yourRSATserver, and count
the number of lines for each variation file (there is one separate file per chromosome or contig).
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19.3 Importing genomes from NCBI BioProject
Tne BioProject database hosts the results of genome sequencing and transcriptome projects.

1. Open a connection to the Bioproject Web site
http://www.ncbi.nlm.nih.gov/bioproject

2. Enter a query to select the organism of interest. E.g.ostreococcus+tauri[orgn]

3. If the organism genome has been sequenced, you should see a title “Genome Sequencing Projects”
in the record. Find the relevant project and open the link.

For example, forOstreococcus tauri, the most relevant project is PRJNA51609
http://www.ncbi.nlm.nih.gov/bioproject/51609

4. Take note of theAccesssionof this genome project: since a same organism might have been
sequenced several times, it will be useful to include this Accession in the suffix of the name of
the file fo be downloaded.

5. On the left side of the page, underRelated information, click the link “Nucleotide genomic
data”. This will display a list of Genbank entries (one per contig).

6. Important: we recommend to create one separate directory per organism, and to name thisdi-
rectory according to the organism name followed by the genome project Accession number. For
example, forOstreococcus tauri, the folder name would beOstreococcus_tauri_PRJNA51609.

This convention will facilitate the further steps of installation, in particular the parsing of genbank-
formatted files with the programparse-genbank.pl.

7. In the top corner of the page, click on theSend tolink and activate the following options.

Send to > File > Genbank full > Create file

Save the file in the organism-specific directory described in the previous step.

8. You can now parse the genome with the programparse-genbank.pl. Note thatparse-genbank.pl
expects files with extension .gbk or .gbk.gz (as in the NCBI genome repository), whereas the
BioProject genome appends the extension.gb. You should thus use the option-ext gb.

parse-genbank.pl -v 2 -i Ostreococcus_tauri_PRJNA51609 - ext gb

After parsing, run the programinstall-organism with the following parameters (adapt organism
name).

install-organism -v 2 -org Ostreococcus_tauri_PRJNA5160 9 \
-task config,phylogeny,start_stop,allup,seq_len_dist rib \
-task genome_segments,upstream_freq,oligos,dyads,pro tein_freq
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19.4 Importing multi-genome alignment files from
UCSC

19.4.1 Warning: disk space requirement
The UCSC multi-genome alignment files occupy a huge disk space. The alignments of 30 vertebrates
onto the mouse genome (mm9 multiz30) requires 70Gb. If you intend to offer support for multi-genome
alignments, it might be safe to acquire a separate hard drive for this data.

The complete data set available at UCSC in April 2012 occupies 1Tb in compressed form, and
probably 7 times more once uncompressed. For efficiency reasons, it is necessary to uncompress these
files for using them with the indexing system ofpeak-footprints.

19.4.2 Checking supported genomes at UCSC
As a first step, we will check the list of supported genomes at the UCSC Genome Browser.

supported-organisms-ucsc

Each genome is assocaited with a short identifier, followed by a description.For example, several
versions of the mouse genome are currently available.

mm10 Mouse Dec. 2011 (GRCm38/mm10) Genome at UCSC
mm9 Mouse July 2007 (NCBI37/mm9) Genome at UCSC
mm8 Mouse Feb. 2006 (NCBI36/mm8) Genome at UCSC
mm7 Mouse Aug. 2005 (NCBI35/mm7) Genome at UCSC

19.4.3 Downloading multiz files from UCSC
Multi-genome alignments at UCSC are generated with the programmultiz , which produces files in a
custom text format calledmaf for Multi-Alignment file.

We show hereafter the command to download the mm9 version of the mouse genome,and install it
in the proper directory forpeak-footprints ($RSAT/data/UCSC_multiz).

download-ucsc-multiz -v 1 -org mm9

Beware: the download of all the multi-species alignments can take several hours for one genome.
The program will create the sub-directory for the mm9 genome, download thecoresponding com-

pressed multiz files (files with extension.maf.gz), uncompress them, and callpeak-footprint with
specific options in order to create a position index, which will be further used for fast retrieval of the
conserved regions under peaks.

19.5 Installing genomes from NCBI/Genbank files
In the section18, we saw that the genomes installed on the mainRSATserver can easily be installed on
your local site. In some cases, you would like to install additional genomes, which are not published
yet, or which are not supported on the mainRSATserver.

If your genomes are available in Genbank (files .gbk) or EMBL (files .embl) format, this can be done
without too much effort, using the installation tools ofRSAT .
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The parsing of genomes from their original data sources is however moretricky than the synchro-
nization from theRSATserver, so this procedure should be used only if you need to install a genome
that is not yet supported.

If this is not your case, you can skip the rest of this section.

19.5.1 Organization of the genome files
In order for a genome to be supported,RSATneeds to find at least the following files.

1. organism description

2. genome sequences

3. feature tables (CDS, mRNA, . . . )

4. lists of names/synonyms

From these files, a set of additional installation steps will be done byRSATprograms in order to
compute the frequencies of oligonucleotides and dyads in upstream sequences.

If you installedRSATas specified above, you can have a look at the organization of a supported
genome, for example the yeastSaccharomyces cerevisiae.

cd ${RSAT}/public_html/data/genomes/Saccharomyces_ce revisiae/genome
ls -l

As you see, the foldergenomecontains the sequence files and the tables describing the organism
and its features (CDSs, mRNAs, . . . ). TheRSATparser exports tables for all the feature types found in
the original genbank file. There are thus a lot of distinct files, but you should not worry too much, for
the two following reasons:

1. RSATonly requires a subset of these files (basically, those describing organisms, CDSs, mR-
NAs, rRNAs and tRNAs).

2. All these files can be generated automatically byRSATparsers.

Organism description

The description of the organism is given in two separate files.

cd ${RSAT}/public_html/data/genomes/Saccharomyces_ce revisiae/genome
ls -l organism * .tab

more organism.tab

more organism_names.tab

1. organism.tabspecifies the ID of the organism and its taxonomy. The ID of an organism is the
TAXID defined by the NCBI taxonomical database, and its taxonomy is usuallyparsed from the
.gbk files (but yo may need to specify it yourself in case it would be missing in your own data
files).

2. organism_name.tabindicates the name of the organism.
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Genome sequence

A genome sequence is composed of one or more contigs. A contig is a contigous sequence, resulting
from the assembly of short sequence fragments obtained during the sequencing. When a genome is
completely sequenced and assembled, each chomosome comes as a single contig.

In RSAT , the genome sequence is specified as one separate file per contig (chromosome) sequence.
Each sequence file must be in raw format (i.e. a text file containing the sequence without any space or
carriage return).

In addition, the genome directory contains one file indicating the list of the contig(chromosome)
files.

cd $RSAT/data/genomes/Saccharomyces_cerevisiae/genom e/

## The list of sequence files
cat contigs.txt

## The sequence files
ls -l * .raw

Feature table

The genomedirectory also contains a set of feature tables giving the basic information about gene
locations. Several feature types (CDS, mRNA, tRNA, rRNA) can be specified in separate files (cds.tab,
mrna.tab, trna.tab, rrna.tab).

Each feature table is a tab-delimited text file, with one row per feature (cds, mrna, . . . ) and one
column per parameter. The following information is expected to be found.

1. Identifier

2. Feature type (e.g. ORF, tRNA, ...)

3. Name

4. Chromosome. This must correspond to one of the sequence identifiers from the fasta file.

5. Left limit

6. Right limit

7. Strand (D for direct, R for reverse complemet)

8. Description. A one-sentence description of the gene function.

## The feature table
head -30 cds.tab
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Feature names/synonyms

Some genes can have several names (synonyms), which are specified inseparate tables.

1. ID. This must be one identifier found in the feature table

2. Synonym

3. Name priority (primary or alternate)

## View the first row of the file specifying gene names/synon yms
head -30 cds_names.tab

Multiple synonyms can be given for a gene, by adding several lines with thesame ID in the first
column.

## An example of yeast genes with multiple names
grep YFL021W cds_names.tab

19.5.2 Downloading genomes from NCBI/Genbank
The normal way to install an organism inRSAT is to download the complete genome files from the
NCBI 3, and to parse it with the programparse-genbank.pl.

However, rather than downloading genomes directly from the NCBI site, wewill obtain them from
a mirror4 which presents two advantages?

• Genome files are compressed (gzipped), which strongly reduces the transfer and storage volume.

• This mirror can be queried byrsync, which facilitates the updates (with the appropriate options,
rsync will only download the files which are newer on the server than on your computer).

RSAT includes a makefile to download genomes from different sources. We provide hereafter a
protocol to create a download directory in your account, and download genomes in this directory.
Beware, genomes require a lot of disk space, especially for those of higher organisms. To avoid filling
up your hard drive, we illustrate the protocol with the smallest procaryote genome to date:Mycoplasma
genitamlium.

## Creating a directory for downloading genomes in your home account
cd $RSAT
mkdir -p downloads
cd downloads

## Creating a link to the makefile which allows you to dowload genomes
ln -s $RSAT/makefiles/downloads.mk ./makefile

We will now download a small genome from NCBI/Genbank.

3ftp://ftp.ncbi.nih.gov/genomes/
4bio-mirror.net/biomirror/ncbigenomes/

107

ftp://ftp.ncbi.nih.gov/genomes/
bio-mirror.net/biomirror/ncbigenomes/


## Downloading one directory from NCBI Genbank
cd $RSAT/downloads/
make one_genbank_dir NCBI_DIR=Bacteria/Mycoplasma_gen italium

We can now check the list of files that have been downloaded.

## Downloading one directory from NCBI Genbank
cd $RSAT/downloads/
ls -l ftp.ncbi.nih.gov/genomes/Bacteria/Mycoplasma_ge nitalium/

RSATparsers only use the files with extension.gbk.gz.
You can also adapt the commande to download (for example) all the Fungal genomes in a single run.

## Downloading one directory from NCBI Genbank
cd $RSAT/downloads/
make one_ncbi_dir NCBI_DIR=Fungi

You can do the same for Bacteria, of for the whole NCBI genome repository, but this requires sveral
Gb of free disck space.

19.5.3 Parsing a genome from NCBI/Genbank
The programparse-genbank.plextract genome information (sequence, gene location, ...) from Gen-
bank flat files, and exports the result in a set of tab-delimited files.

parse-genbank.pl -v 1 \
-i $RSAT/downloads/ftp.ncbi.nih.gov/genomes/Bacteria /Mycoplasma_genitalium

19.5.4 Parsing a genome from the Broad institute (MIT)
The websitehttp://www.broad.mit.edu/ offers a large collection of genomes that are not
available on the NCBI website. We wrote a specific parser for the Broad files.

To this, download the following files for the organism of interest : the supercontig file, the protein
sequences and the annotation file in the GTF format.

These files contain sometimes too much information that shoud be removed.
This is an example of the beginning of the fasta file containing the protein traduction. In this file, we

should remove everything that follows the protein name.

>LELG_00001 | Lodderomyces elongisporus hypothetical pro tein (translation) (1085 aa)
MKYDTAAQLSLINPQTLKGLPIKPFPLSQPVFVQGVNNDTKAITQGVFLDVTVHFISLPA
ILYLHEQIPVGQVLLGLPFQDAHKLSIGFTDDGDKRELRFRANGNIHKFPIRYDGDSNYH
IDSFPTVQVSQTVVIPPLSEMLRPAFTGSRASEDDIRYFVDQCAEVSDVFYIKGGDPGRL

This is an example of the beginning of the fasta file containing the contigs. In thisfile, we should
remove everything that follows the name of the contig.

>supercontig_1.1 of Lodderomyces elongisporus
AAGAGCATCGGGCAAATGATGTTTTTCAGTCCATCAATGTGATGGATCTGATAGTTGAAG
GTCCTGATGAAGTTCAACCATTTGTAAACCCGATTTACAAAGTGTGAATTATCGAGTGGT
TTATTCATCACAAGGACAAGAGCTTTGTTGGTTGACAGAGATGTTTTGCAGAAAGCCCTT
AAGGATGGTATTGCCTTGTTCAAGAAGAAACCAGTTGTTACTGAAGTAAATCTGACGACC
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This is an example of the beginning of the GTF file containing the contigs annotation. We should
rename the contig name so that it corresponds to the fasta file of contig. To this, we will remove the
text in the name of the contig (only keep the supercontig number) and add a prefix.

supercont1.1%20of%20Lodderomyces%20elongisporus LE1_ FINAL_GENECALL start_codon
322 324 . + 0 gene_id "LELG_00001"; transcript_id "LELT_000 01";
supercont1.1%20of%20Lodderomyces%20elongisporus LE1_ FINAL_GENECALL stop_codon
3574 3576 . + 0 gene_id "LELG_00001"; transcript_id "LELT_0 0001";
supercont1.1%20of%20Lodderomyces%20elongisporus LE1_ FINAL_GENECALL exon 322
3576 . + . gene_id "LELG_00001"; transcript_id "LELT_00001 ";
supercont1.1%20of%20Lodderomyces%20elongisporus LE1_ FINAL_GENECALL CDS 322 3573
. + 0 gene_id "LELG_00001"; transcript_id "LELT_00001";

We use the parseparse-broad-mit.

parse-broad-mit.pl -taxid 36914 -org Lodderomyces_elong isporus \
-nuc_seq lodderomyces_elongisporus_1_supercontigs.fa sta \
-gtf lodderomyces_elongisporus_1_transcripts.gtf \
-gtf_remove ’supercont’ \
-gtf_remove ’%20of%20Lodderomyces%20elongisporus’ \
-contig_prefix LELG_ -nuc_remove supercontig_ \
-nuc_remove ’ of Lodderomyces elongisporus’ \
-aa lodderomyces_elongisporus_1_proteins.fasta -aa_re move ’ . * ’

This will create the raw files, the feature files and the protein sequence file.

19.5.5 Updating the configuration file
After having parsed the genome, you need to perform one additional operation in order forRSAT to be
aware of the new organism: update the configuration file.

install-organism -v 1 -org Mycoplasma_genitalium -task co nfig

## Check the last lines of the configuration file
tail -15 $RSAT/data/supported_organisms.pl

From now on, the genome is considered as supported on your localRSATsite. You can check this
with the commandsupported-organisms.

19.5.6 Checking the start and stop codon composition
Once the organism is found in your configuration, you need to check whether sequences are retrieved
properly. A good test for this is to retrieve all the start codons, and check whether they are made of the
expected codons (mainly ATG, plus some alternative start codons like GTG or TTG for bacteria).

The scriptinstall-organism allows you to perform some additional steps for checking the confor-
mity of the newly installed genome. For example, we will compute the frequencies ofall the start and
stop codons, i order to check that gene locations were corectly parsed.

install-organism -v 1 -org Mycoplasma_genitalium -task st art_stop

ls -l $RSAT/data/genomes/Mycoplasma_genitalium/genome / * start *

ls -l $RSAT/data/genomes/Mycoplasma_genitalium/genome / * stop *
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The stop codons should be TAA, TAG or TGA, for any organism. For eucaryotes, all start codons
should be ATG. For some procaryotes, alternative start codons (GTG,TGG) are found with some
genome-specific frequency.

cd $RSAT/data/genomes/Mycoplasma_genitalium/genome/

## A file containing all the start codons
more Mycoplasma_genitalium_start_codons.wc

## A file with trinucleotide frequencies in all start codons
more Mycoplasma_genitalium_start_codon_frequencies

## A file containing all the stop codons
more Mycoplasma_genitalium_stop_codons.wc

## A file with trinucleotide frequencies in all stop codons
more Mycoplasma_genitalium_stop_codon_frequencies

19.5.7 Calibrating oligonucleotide and dyad frequencies with
install-organisms

The programsoligo-analysis and dyad-analysis require calibrated frequencies for the background
models. These frequencies are calculated automatically withinstall-organism.

install-organism -v 1 -org Debaryomyces_hansenii \
-task allup,oligos,dyads,upstream_freq,protein_freq

Warning: this task may require several hours of computation, depending on the genome size. For
theRSATserver, we use a PC cluster to regularly install and update genomes. As thetaskallup, is a
prerequisite for the computation of all oligonucleotide and dyad frequencies, it should be run directly
on the main server before computing oligo and dyad frequencies on the nodes of the cluster. We will
thus proceed in two steps. Note that this requires a PC cluster and a properconfiguration of the batch
management program.

## Retrieve all upstream sequences
## Executed directly on the server
install-organism -v 1 -org Debaryomyces_hansenii \

-task allup

## Launch a batch queue for computing all oligo and dyad frequ encies
## Executed on the nodes of a cluster
install-organism -v 1 -org Debaryomyces_hansenii \

-task oligos,dyads,upstream_freq,protein_freq -batch

19.5.8 Installing a genome in your own account
In some cases, you might want to install a genome in your own account rather than in theRSAT folder,
in order to be able to analyze this genome before putting it in public access.
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In this chapter, we explain how to add support for an organism on your local configuration ofRSAT .
This assumes that you have the complete sequence of a genome, and a table describing the predicted
location of genes.

First, prepare a directory where you will store the data for your organism. For example:

mkdir -p $HOME/rsat-add/data/Mygenus_myspecies/

One you have this information, start the programinstall-organism. You will be asked to enter the
information needed for genome installation.

Updating your local configuration

• Modify the local config file

• You need to define an environment variable called RSA_LOCAL_CONFIG, containing the full
path of the local config file.

19.6 Installing genomes from EMBL files
RSATalso includes a scriptparse-embl.pl to parse genomes from EMBL files. However, for practicaly
reasons we generally parse genomes from the NCBI genome repository.Thus, unless you have a
specific reason to parse EMBL files, you can skip this section.

The programparse-embl.pl reads flat files in EMBL format, and exports genome sequences and
features (CDS, tRNA, ...) in different files.

As an example, we can parse a yeast genome sequenced by the “Genolevures” project5.
Let us assume that you want to parse the genome of the speciesDebaryomyces hansenii.
Before parsing, you need to download the files in your account,

• Create a directory for storing the EMBL files. The last level of the directory should be the name
of the organism, where spaces are replaced by underscores. Let usassume that you store them
in the directory$RSAT/downloads/Debaryomyces_hansenii.

• Download all the EMBL file for the selected organism. Save each name under its original name
(the contig ID), followed by the extension.embl )

We will check the content of this directory.

ls -1 $RSAT/downloads/Debaryomyces_hansenii

On my computer, it gives the following result

CR382133.embl
CR382134.embl
CR382135.embl
CR382136.embl
CR382137.embl
CR382138.embl
CR382139.embl

5http://natchaug.labri.u-bordeaux.fr/Genolevures/dow nload.php
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The following instruction will parse this genome.

parse-embl.pl -v 1 -i $RSAT/downloads/Debaryomyces_hans enii

If you do not specify the output directory, a directory is automatically created by combining the
current date and the organism name. The verbose messages will indicate you the path of this directory,
something like$HOME/parsed_data/embl/20050309/Debaryomyces_hanseni.

You can now perform all the steps above (updating the config file, installingoligo- and dyad fre-
quencies, . . . ) as for genomes parsed from NCBI.

Installing a genome in the main RSAT directory

Once the genome has been parsed, the simplest way to make it available for allthe users is to install it
in theRSATgenome directory. You can already check the genomes installed in this directory.

ls -1 $RSAT/data/genomes/

There is one subdirectory per organism. For example, the yeast data is in$RSAT/data/genomes/Sac-
charomyces_cerevisiae/. This directory is further subdivided in folders:genomeandoligo-frequencies.

We will now create a directory to store data about Debaryomyces_hansenii, and transfer the newly
parsed genome in this directory.

## Create the directory
mkdir -p $RSAT/data/genomes/Debaryomyces_hansenii/gen ome

## Transfer the data in this directory
mv $HOME/parsed_data/embl/20050309/Debaryomyces_hans eni/ * \

$RSAT/data/genomes/Debaryomyces_hansenii/genome

## Check the transfer
ls -ltr $RSAT/data/genomes/Debaryomyces_hansenii/geno me
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20 Regulatory variations (rSNPs and
insertion/deletions)

Jérémy Delerce and Jacques van Helden

This chapter presents a series of tools to analyze the impact of genetic polymorphism (inter-individual
variations) on the binding of transcription factors.

It combines a series of tools to

1. download genomes, features, and variations from theEnsEMBL database and install them on
the localRSATserver;

2. obtain sequences of variants, exended on both sides;

3. scan these variant sequences with position-specific scoring matrices (PSSM) in order to detect
variations that may affect transcription factor binding.

20.1 Requirements
The functionalities described below require a connection to theEnsEMBL database, via their Perl
API1.

In principle, the Ensembl Perl modules should have been installed together with RSAT (seeRSAT installation
guide for details).

20.2 Getting variation sequences
Before detecting regulatory variations, the first step is to obtain the genomic sequences of these vari-
ations. For this, variations must have been installed on your server by theRSATadministrator (the
installation protocol is explained in Section19.2.3).

To check if variations have been installed for your genome of interest, youcan proceed in the fol-
lowing way.

20.2.1 Checking the installation of variations on your RSAT server
Since the databases about polymorphic variations are growing exponentially, the default genome in-
stallation does not include variations. The programinstall-ensembl-genomeincludes the option-task
variations, which downloads all variations from the Ensembl database, and exportsthem in one file per
chromosome or contig.

1API: application programmatic interface
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1. Check which versions and assemblies of your organism of interest have been installed onRSAT .

2. Check if variations have been installed for these versions/assemblies.

3. Count the number of variations per chromosome.

Let us assume that we are interested by the Human genome. We want to see if our RSATadmin
installed it, and, if so, to check which versions or assemblies are available locally.

supported-organisms -taxon Homo

In our case, we get the following answer:

Homo_sapiens_GRCh37
Homo_sapiens_GRCh38

Variations are installed in the organism-specific folder of the genome directory.

ls ${RSAT}/public_html/data/genomes/Homo_sapiens_GRC h38/variations

Variations are stored in tab-delimited text files, with one separate file per chromosome. The demo
makefile includes a target to check the size of variation files (count the number of lines per file).

## Check the content of the variation directory for the yeast
make -f ${RSAT}/makefiles/variation-scan\_demo.mk \

SPECIES=Homo_sapiens ASSEMBLY=GRCh38 \
variation_stats

This command will indicate the location of the variation directory on yourRSATserver, and count
the number of lines for each variation file (there is one separate file per chromosome or contig).

Statistics about variations
SPECIES Homo_sapiens
ASSEMBLY GRCh38
ORG Homo_sapiens_GRCh38
VARIATION_DIR /data/rsat/public_html/data/genomes/Ho mo_sapiens_GRCh38/variations

Number of lines per variation file
... (we skip some lines)

4027724 4.tab
4134079 3.tab
4666045 1.tab
4984715 2.tab

60448850 total

20.3 File formats for variations
Several formats have been defined to store inforamtion about genetic variations.

To ensure compatibility between the different sources of information andRSAT requirements, the
programconvert-variation ensures inter-conversions betwneen different formats. The program in-
cludes an on-line help which provides more information about the differentformats.
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convert-variations -h

We will treat an example of conversion from the GVF to varbed format. We prepared some demo
cases in the filemakefiles/variation-scan_demo.mk.

make -f makefiles/variation-scan_demo.mk

TO BE WRITTEN

20.4 Detecting regulatory variations

20.4.1 Scanning a selected variation with selected matrices
TO BE WRITTEN

20.4.2 Obtaining a list of disease-associated variation IDs
In order to test the retrieval of multiple variations, we will first select a realistic case, by getting a list
of Human variations associated to some disease (for instance diabetes).

Open a connection to the dbSNP database2, and paste the following test in the query box:

("Homo sapiens"[ORG]) AND (diabetes[Text Word]) AND ("fal se"[Not Reference Assembly])

TO BE WRITTEN

20.4.3 Scanning a list of selected variations with a list of matrices
TO BE WRITTEN

20.4.4 Scanning all variations with a selected matrix
TO BE WRITTEN

2http://www.ncbi.nlm.nih.gov/SNP/
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21 Exercises
As an exercise, we will now combine the different tools described above toanalyse the full set of
promoters fromArabidopsis thaliana. We define ourselves the following goals :

1. Discover motifs which are over-represented in the complete set of upstream sequences for the
selected organism.

2. Try different parameters for this pattern discovery, and compare theresults.

3. Use these over-represented patterns to scan full chromosomes with a sliding window, in order
to evaluate if we can predict promoter locations on the sole basis of pattern occurrences. Find
optimal parameters for the prediction of promoter locations.

21.1 Some hints

21.1.1 Sequence retrieval
The first step will be to retrieve the full complement of upstream sequences. Since we have no precise
idea about the best sequence size, we will try several reasonable ranges, each roughly corresponding to
a given functionality.

from -1 to -200 this regions is likey to contain mostly 5’UTR.

from -1 to -400 this region is likely to contain the 5’ UTR and the proximal promoter.

from -1 to -1000 this region is likely to include the 5’UTR, as well as the proxima and distal pro-
moters.

from -1 to -2000 an even larger range, which probably contains most of the upstream cis-acting ele-
ments inA. thaliana.

In all cases, we will clip upstream ORFs, because they would bias the oligonucleotide composition.
Write the commands which will retrieve all upstream sequences over the specified range. Beware,

the sequence files may occupy a large space on the disk, it is probably wiseto directly compress them
by adding the extension.gz to the output file.

21.1.2 Detection of over-represented motifs
In a first step, we will restrict our analysis to hexanucleotides. Once all the subsequent steps (full chro-
mosome scanning) will be accomplished, we will redo the complete analysis with different oligonu-
cleotide lengths, and compare the efficiency of promoter prediction.

Detect over-represented oligo-nucleotides with different estimators of expected frequencies: Markov
chains of different orders, non-coding frequencies.

Do not forget to prevent counting self-overlapping matches.
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22 Using RSAT Web Services

Note: in complement of the following instructions, we recommend to run the protocol for using
RSATWeb services [?].

22.1 Introduction
RSAT facilities can be used as Web Services (WS), i.e. external developers (you) can integrateRSATmethods
in their own code. An important advantage of Web Services is that they are using a standard commu-
nication interface between client and server (e.g. WSDL/SOAP), for which libraries exist in various
languages (Perl, Python, java).

We explain below how to implement WS clients in Perl, Java and Python forRSATprograms.

22.2 Examples of WS clients in Perl with SOAP::WSDL
2.00 (or above)

22.2.1 Requirements
Before using such WS clients, You need to install theModule::Build::Compat and theSOAP::WSDL
Perl modules. These Perl modules can be installed with the programcpan. When required, you will
be prompted to install dependency modules forSOAP::WSDL . For all this you need root privileges.
If this is not your case, please ask your system administrator to install them for you.

The other thing you need is the RSATWS library that you can download fromthe following website:
http://rsat.ulb.ac.be/rsat/web_services/RSATWS.tar. gz
Place it in the same directory as your clients, then uncompress if with the following command.

tar -xpzf RSATWS.tar.gz

22.2.2 Retrieving sequences from RSATWS
The following example is a script to retrieve the start codons of three Escherichia coli genes. It uses
retrieve-seq to do so. The various parameters are passed as a hash table to the method. If there is an
error, it will be displayed, otherwise the result is displayed, toghether withthe full command generated
on the server and the name of the temporary file created on the server to holdthe result localy. This
file is useful when one wants to feed another program with that output, whithout paying the cost of a
useless data transport back and forth between the server and the client.

#!/usr/bin/perl -w
# retrieve-seq_client_soap-wsdl.pl - Client retrieve-se q using the SOAP::WSDL
#module
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################################################### #############
##
## This script runs a simple demo of the web service inerface t o the
## RSAT tool retrieve-seq. It sends a request to the server fo r
## obtaining the start codons of 3 E.coli genes.
##
################################################### #############

use strict;
use SOAP::WSDL;
use lib ’RSATWS’;
use MyInterfaces::RSATWebServices::RSATWSPortType;

warn ‘‘\nThis demo script retrieves the start codons for a se t of query
genes\n\n’’;

## WSDL location
my $server = ’http://rsat.ulb.ac.be/rsat/web_services’ ;

## Service call
my $soap=MyInterfaces::RSATWebServices::RSATWSPortTy pe->new();

## Output option
my $output_choice = ’both’; ## Accepted values: ’server’, ’ client’, ’both’

## Retrieve-seq parameters
my $organism = ’Escherichia_coli_K_12_substr__MG1655_u id57779’; ## Name of the query organism
my @gene = (‘‘metA’’, ‘‘metB’’, ‘‘metC’’); ## List of query g enes
my $all = 0; ## the -all option (other accepted value = 1). This option is
incompatible with the query list @gene (above)
my $noorf = 1; ## Clip sequences to avoid upstream ORFs
my $from = 0; ## Start position of the sequence
my $to = 2; ## End position of the sequence
my $feattype = ’’; ## The -feattype option value is not specif ied, the
default is used
my $type = ’’; ## The -type option value; other example:’-typ e downstream’
my $format = ’’; ## The -format option value. We use the defaul t (fasta), but
other formats could be specified, for example ’multi’
my $lw = 0; ## Line width. 0 means all on one line
my $label = ’id,name’; ## Choice of label for the retrieved se quence(s)
my $label_sep = ’’; ## Choice of separator for the label(s) of the retrieved
sequence(s)
my $nocom = 0; ## Other possible value = 1, to get sequence(s) w hithout
comments
my $repeat = 0; ## Other possible value = 1, to have annotated r epeat
regions masked
my $imp_pos = 0; ## Admit imprecise position (value = 1 to do so )

my %args = (
’output’ => $output_choice,
’organism’ => $organism,
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’query’ => \@gene, ## An array in a hash has to be referenced
(always?)
’noorf’ => $noorf,
’from’ => $from,
’to’ => $to,
’feattype’ => $feattype,
’type’ => $type,
’format’ => $format,
’lw’ => $lw,
’label’ => $label,
’label_sep’ => $label_sep,
’nocom’ => $nocom,
’repeat’ => $repeat,
’imp_pos’ => $imp_pos
);

## Send the request to the server
print ‘‘Sending request to the server $server\n’’;
my $som = $soap->retrieve_seq({’request’ => \%args});

## Get the result
unless ($som) {

printf ‘‘A fault (%s) occured: %s\n’’, $som->get_faultcod e(),
%$som->get_faultstring();

} else {
my $results = $som->get_response();

## Report the remote command
my $command = $results -> get_command();
print ‘‘Command used on the server: ‘‘.$command, ‘‘\n’’;

## Report the result
if ($output_choice eq ’server’) {

my $server_file = $results -> get_server();
print ‘‘Result file on the server: ‘‘.$server_file;

} elsif ($output_choice eq ’client’) {
my $result = $results -> get_client();
print ‘‘Retrieved sequence(s): \n’’.$result;

} elsif ($output_choice eq ’both’) {
my $server_file = $results -> get_server();
my $result = $results -> get_client();
print ‘‘Result file on the server: ‘‘.$server_file.’’\n’’ ;
print ‘‘Retrieved sequence(s): \n’’.$result;

}
}
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22.3 Examples of WS clients in Perl with SOAP::WSDL
1.27 (or below)

Some of you are maybe already using perl WS clients with an older version ofSOAP::WSDL and
would like to stick to it. We show hereafter some simple examples of clients written in perl and using
such version of the module. The presented code as well as other can be downloaded from

http://rsat.ulb.ac.be/rsat/web_services.html

22.3.1 Requirements
• SOAP::Lite

• SOAP::WSDL , version 1.27 or below.

These Perl modules can be installed with the programcpan, but for this you need root privileges. If
this is not your case, please ask your system administrator to install them foryou.

22.3.2 Getting gene-info from RSATWS
The following script allows to get information about threeEscherichia coligenes fromRSAT . The
client script passes through the web service to run thegene-info on the server. A list of genes is
provided to the server, which returns the information about those genes.

#!/usr/bin/perl -w
# gene-info_client_minimal_soap-wsdl.pl - Client gene-i nfo using the SOAP::WSDL module.

################################################### #############
##
## This script runs a simple demo of the web service interface to the
## RSAT tool gene-info. It sends a list of 3 gene names to the se rver,
## in order to obtain the information about these genes.
##
################################################### #############

use strict;
use SOAP::WSDL;

## Service location
my $server = ’http://rsat.ulb.ac.be/rsat/web_services’ ;
my $WSDL = $server.’/RSATWS.wsdl’;
my $proxy = $server.’/RSATWS.cgi’;

## Call the service
my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy) ;
$soap->wsdlinit;

## Gene-info parameters
my $organism = ’Escherichia_coli_K_12_substr__MG1655_u id57779’; ## Name of the query organism
my @gene = ("metA", "metB", "metC"); ## List of query genes
my $full = 1; ## Looking for full match, not substring match.
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my %args = (’organism’ => $organism,
’query’ => \@gene,
’full’ => $full);

## Send the request to the server
warn "Sending request to the server $server\n";
my $call = $soap->call(’gene_info’ => ’request’ => \%args) ;

## Get the result
if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $ca ll->faultstring;
} else {

my $results_ref = $call->result; ## A reference to the resul t hash table
my %results = %$results_ref; ## Dereference the result hash table

## Report the remote command
my $command = $results{’command’};
print "Command used on the server: ".$command, "\n";

## Report the result
my $result = $results{’client’};
print "Gene(s) info(s): \n".$result;

}

We can now use additional parameters of thegene-infoprogram. For example, we could use regular
expressions to ask the server for all the yeast genes whose name startswith ’MET’, followed by one or
several numbers.

... (same as above)

## Gene-info parameters
my $organism = ’Saccharomyces_cerevisiae’; ## Name of the q uery organism
my @queries = (’MET\d+’); ## This query is a regular expressi on
my $full = 1; ## Looking for full match, not substring match.

my %args = (’organism’ => $organism,
’query’ => \@queries,
’full’ => $full);

... (same as above)

We can also extend the search to match the query strings against gene descriptions (by default, they
are only matched against gene names).

... (same as above)

## Gene-info parameters
my $organism = ’Escherichia_coli_K_12_substr__MG1655_u id57779’; ## Name of the query organism
my @queries = ("methionine", "purine"); ## List of queries
my $full = 0;
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my $descr = 1; ## Search also in description field of genes

my %args = (’organism’ => $organism,
’query’ => \@queries,
’full’ => $full,
’descr’ => $descr);

... (same as above)

22.3.3 Documentation
We saw above that the command

gene-info

can be called with various options. The description of the available options can be found in the docu-
mentation of the RSATWS web services at the following URL.

http://rsat.ulb.ac.be/rsat/web_services/RSATWS_docu mentation.xml

22.3.4 Retrieving sequences from RSATWS
The following example is a script to retrieve the start codons of three Escherichia coli genes. It uses
retrieve-seq to do so. The various parameters are passed as a hash table to the method. If there is an
error, it will be displayed, otherwise the result is displayed, toghether withthe full command generated
on the server and the name of the temporary file created on the server to holdthe result localy. This
file is useful when one wants to feed another program with that output, whithout paying the cost of a
useless data transport back and forth between the server and the client.

#!/usr/bin/perl -w
# retrieve-seq_client_soap-wsdl.pl - Client retrieve-se q using the SOAP::WSDL module

################################################### #############
##
## This script runs a simple demo of the web service interface to the
## RSAT tool retrieve-seq. It sends a request to the server fo r
## obtaining the start codons of 3 E.coli genes.
##
################################################### #############

use strict;
use SOAP::WSDL;

warn "\nThis demo script retrieves the start codons for a set of query genes\n\n";

## WSDL location
my $server = ’http://rsat.ulb.ac.be/rsat/web_services’ ;
my $WSDL = $server.’/RSATWS.wsdl’;
my $proxy = $server.’/RSATWS.cgi’;

## Service call
my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy) ;
$soap->wsdlinit;
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## Output option
my $output_choice = ’both’; ## Accepted values: ’server’, ’ client’, ’both’

## Retrieve-seq parameters
my $organism = ’Escherichia_coli_K_12_substr__MG1655_u id57779’; ## Name of the query organism
my @gene = ("metA", "metB", "metC"); ## List of query genes
my $noorf = 1; ## Clip sequences to avoid upstream ORFs
my $from = 0; ## Start position of the sequence
my $to = 2; ## End position of the sequence
my $lw = 0; ## Line width. 0 means all the sequence on one line
my $label = ’id,name’; ## Choice of label for the retrieved se quence(s)

my %args = (
’output’ => $output_choice,
’organism’ => $organism,
’query’ => \@gene,
’noorf’ => $noorf,
’from’ => $from,
’to’ => $to,
’lw’ => $lw,
’label’ => $label,
);

## Send the request to the server
print "Sending request to the server $server\n";
my $call = $soap->call(’retrieve_seq’ => ’request’ => \%ar gs);

## Get the result
if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $ca ll->faultstring;
} else {

my $results_ref = $call->result; ## A reference to the resul t hash table
my %results = %$results_ref; ## Dereference the result hash table

## Report the remote command
my $command = $results{’command’};
print "Command used on the server: ".$command, "\n";

## Report the result
if ($output_choice eq ’server’) {

my $server_file = $results{’server’};
print "Result file on the server: ".$server_file;

} elsif ($output_choice eq ’client’) {
my $result = $results{’client’};
print "Retrieved sequence(s): \n".$result;

} elsif ($output_choice eq ’both’) {
my $server_file = $results{’server’};
my $result = $results{’client’};
print "Result file on the server: ".$server_file;
print "Retrieved sequence(s): \n".$result;

}
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}

22.3.5 Work flow using RSATWS
The following example is the script of a typical workflow of RSA Tools programs. First, the upstream
sequences of five Saccharomyces cerevisiae genes are retrieved withretrieve-seq. Then, purge-
sequenceis applyed to remove any redundancy in the set of sequences. Finally,oligo-analysis is
applied to discover over-represented six letters words. The result of step 1 and 2 are stored on the
server, so that the file name can be sent to the following step as input and only the final result needs to
be transported from the server to the client.

#!/usr/bin/perl -w
# retrieve_purge_oligos_client_soap-wsdl.pl - Client re trieve-seq + oligo-analysis

################################################### #############
##
## This script runs a simple demo of the web service interface to the
## RSAT tools retrieve-seq, purge-sequence and oligo-anal ysis linked in a workflow.
## It sends a request to the server for discovering 6 letter wo rds
## in upstream sequences of 5 yeast genes. The sequences are f irst
## retrieved and purged for repeated segments
##
################################################### #############

use strict;
use SOAP::WSDL;

warn "\nThis demo script illustrates a work flow combining t hree requests to the RSAT web

## Service location
my $server = ’http://rsat.ulb.ac.be/rsat/web_services’ ;
my $WSDL = $server.’/RSATWS.wsdl’;
my $proxy = $server.’/RSATWS.cgi’;

## Service call
my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy) ;
$soap->wsdlinit;

#################################################
## Retrieve-seq part

## Output option
my $output_choice = ’server’; ## The result will stay in a fil e on the server

## Parameters
my $organism = ’Saccharomyces_cerevisiae’; ## Name of the q uery organism
my @gene = ("PHO5", "PHO8", "PHO11", "PHO81", "PHO84"); ## L ist of query genes
my $noorf = 1; ## Clip sequences to avoid upstream ORFs
my $from; ## Start position of the sequence. Default is used ( -800).
my $to; ## End position of te sequence. Default is used (-1).
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my $feattype; ## -feattype option value is not defined, defa ult is used (CDS).
my $type; ## -type option value; other example:’-type downs tream’
my $format = ’fasta’; ## the format of the retrieved sequence (s)
my $label; ## Choice of label for the retrieved sequence(s). Default is used.
my $label_sep; ## Choice of separator for the label(s) of the retrieved sequence(s). Default

my %args = (’output’ => $output_choice,
’organism’ => $organism,
’query’ => \@gene, ## An array in a hash has to be referenced
’noorf’ => $noorf,
’from’ => $from,
’to’ => $to,
’feattype’ => $feattype,
’type’ => $type,
’format’ => $format,
’label’ => $label,
’label_sep’ => $label_sep
);

## Send request to the server
print "\nRetrieve-seq: sending request to the server\t", $ server, "\n";
my $call = $soap->call(’retrieve_seq’ => ’request’ => \%ar gs);

## Get the result
my $server_file; ## That variable needs to be declared outsi de the if..else block to be
if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $ca ll->faultstring;
} else {

my $results_ref = $call->result; ## A reference to the resul t hash table
my %results = %$results_ref; ## Dereference the result hash table

## Report the remote command
my $command = $results{’command’};
print "Command used on the server:\n\t".$command, "\n";

## Report the result file name on the server
$server_file = $results{’server’};
print "Result file on the server:\n\t".$server_file;

}

#################################################
## Purge-sequence part

## Define hash of parameters
%args = (’output’ => $output_choice, ## Same ’server’ outpu t option

’tmp_infile’ => $server_file); ## Output from retrieve-se q part is used as input here

## Send the request to the server
print "\nPurge-sequence: sending request to the server\t" , $server, "\n";
$call = $soap -> call(’purge_seq’ => ’request’ => \%args);

## Get the result
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if ($call->fault){ ## Report error if any
printf "A fault (%s) occured: %s\n", $call->faultcode, $ca ll->faultstring;

} else {
my $results_ref = $call->result; ## A reference to the resul t hash table
my %results = %$results_ref; ## Dereference the result hash table

## Report the remote command
my $command = $results{’command’};
print "Command used on the server: \n\t".$command, "\n";

## Report the result file name on the server
$server_file = $results{’server’};
print "Result file on the server: \n\t".$server_file;

}
#################################################
## Oligo-analysis part

## Output option
$output_choice = ’both’; ## We want to get the result on the cl ient side, as well as the

## Parameters
my $format = ’fasta’; ## The format of input sequences
my $length = 6; ## Length of patterns to be discovered
my $background = ’upstream-noorf’; ## Type of background us ed
my $stats = ’occ,proba,rank’; ## Returned statistics
my $noov = 1; ## Do not allow overlapping patterns
my $str = 2; ## Search on both strands
my $sort = 1; ## Sort the result according to score
my $lth = ’occ_sig 0’; ## Lower limit to score is 0, less signif icant patterns are not

%args = (’output’ => $output_choice,
’tmp_infile’ => $server_file,
’format’ => $format,
’length’ => $length,
’organism’ => $organism,
’background’ => $background,
’stats’ => $stats,
’noov’ => $noov,
’str’ => $str,
’sort’ => $sort,
’lth’ => $lth);

## Send request to the server
print "\nOligo-analysis: sending request to the server\t" , $server, "\n";
$call = $soap->call(’oligo_analysis’ => ’request’ => \%ar gs);

## Get the result
if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $ca ll->faultstring;
} else {

my $results_ref = $call->result;
my %results = %$results_ref;
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## Report remote commande
my $command = $results{’command’};
print "Command used on the server: ".$command, "\n";

## Report the result
if ($output_choice eq ’server’) {

$server_file = $results{’server’};
print "Result file on the server: \n\t".$server_file;

} elsif ($output_choice eq ’client’) {
my $result = $results{’client’};
print "Discovered oligo(s): \n".$result;

} elsif ($output_choice eq ’both’) {
$server_file = $results{’server’};
my $result = $results{’client’};
print "Result file on the server: \n\t".$server_file;
print "Discovered oligo(s): \n".$result;

}
}

22.3.6 Discover patterns with RSATWS
You can, of course, use directly the programoligo-analysis, providing your own sequences. In the
following script, the upstream sequences of five yeast genes are sentas input to oligo-analysis. Over-
represented hexanucleotides are returned.

#!/usr/bin/perl -w
# oligos_client_soap-wsdl.pl - Client oligo-analysis usi ng the SOAP::WSDL module

################################################### #############
##
## This script runs a simple demo of the web service interface to the
## RSAT tool oligo-analysis. It sends a request to the server for
## discovering 6 letter words in the upstream sequences of 5 y east genes.
##
################################################### #############

use strict;
use SOAP::WSDL;

warn "\nINFO: This demo script sends a set of sequences to the RSAT web service, and runs

## WSDL location
my $server = ’http://rsat.ulb.ac.be/rsat/web_services’ ;
my $WSDL = $server.’/RSATWS.wsdl’;
my $proxy = $server.’/RSATWS.cgi’;

my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy) ;

$soap->wsdlinit;

## Output option
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my $output_choice = ’both’; ## Accepted values: ’server’, ’ client’, ’both’

## Oligo-analysis parameters
my $sequence = ’>NP_009651.1 PHO5; upstream from -800 to -1; size: 800; location: NC_001134.7
TTTTACACATCGGACTGATAAGTTACTACTGCACATTGGCATTAGCTAGGAGGGCATCCAAGTAATAATTGCGAGAAACGTGACCCAACTTTGTTGTAGGTCCGCTCCTTCTAATAATCGCTTGTATCTCTACA
>NP_010769.1 PHO8; upstream from -180 to -1; size: 180; loca tion: NC_001136.8 1420243
CAGCATTGACGATAGCGATAAGCTTCGCGCGTAGAGGAAAAGTAAAGGGATTTTAGTATATAAAGAAAGAAGTGTATCTAAACGTTTATATTTTTTCGTGCTCCACATTTTGCCAGCAAGTGGCTACATAAACA
>NP_009434.1 PHO11; upstream from -800 to -1; size: 800; loc ation: NC_001133.6 224651
GCAGCCTCTACCATGTTGCAAGTGCGAACCATACTGTGGCCACATAGATTACAAAAAAAGTCCAGGATATCTTGCAAACCTAGCTTGTTTTGTAAACGACATTGAAAAAAGCGTATTAAGGTGAAACAATCAAG
>NP_011749.1 PHO81; upstream from -800 to -1; size: 800; loc ation: NC_001139.7 958214
AAACGAGCATGAGGGTTACAAAGAACTTCCGTTTCAAAAATGAATATAATCGTACGTTTACCTTGTGGCAGCACTAGCTAACGCTACGTGGAATGAACGTACCGTGCCCTATTATTCTTGCTTGTGCTATCTCA
>NP_013583.1 PHO84; upstream from -800 to -1; size: 800; loc ation: NC_001145.2 25802
AAAAAAAAAGATTCAATAAAAAAAGAAATGAGATCAAAAAAAAAAAAAATTAAAAAAAAAAAGAAACTAATTTATCAGCCGCTCGTTTATCAACCGTTATTACCAAATTATGAATAAAAAAACCATATTATTAT

my $format = ’fasta’; ## The format of input sequences
my $length = 6; ## Length of patterns to be discovered
my $organism = ’Saccharomyces_cerevisiae’; ## Name of the q uery organism
my $background = ’upstream-noorf’; ## Type of background us ed
my $stats = ’occ,proba,rank’; ## Returned statistics
my $noov = 1; ## Do not allow overlapping patterns
my $str = 2; ## Search on both strands
my $sort = 1; ## Sort the result according to score
my $lth = ’occ_sig 0’; ## Lower limit to score is 0, less signif icant patterns are not

my %args = (’output’ => $output_choice,
’sequence’ => $sequence,
’format’ => $format,
’length’ => $length,
’organism’ => $organism,
’background’ => $background,
’stats’ => $stats,
’noov’ => $noov,
’str’ => $str,
’sort’ => $sort,
’lth’ => $lth);

## Send request to the server
print "Sending request to the server $server\n";
my $call = $soap->call(’oligo_analysis’ => ’request’ => \% args);

## Get the result
if ($call->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $call->faultcode, $ca ll->faultstring;
} else {

my $results_ref = $call->result; ## A reference to the resul t hash table
my %results = %$results_ref; ## Dereference the result hash table

##Report the remote command
my $command = $results{’command’};
print "Command used on the server: ".$command, "\n";

## Report the result
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if ($output_choice eq ’server’) {
my $server_file = $results{’server’};
print "Result file on the server: ".$server_file;

} elsif ($output_choice eq ’client’) {
my $result = $results{’client’};
print "Discovered oligo(s): \n".$result;

} elsif ($output_choice eq ’both’) {
my $server_file = $results{’server’};
my $result = $results{’client’};
print "Result file on the server: ".$server_file;
print "Discovered oligo(s): \n".$result;

}
}

22.3.7 Example of clients using property files
We have also made clients using an alternative approach. Instead of writingthe parameters values in
the client code itself, these are read from a property file. Here is the clientfor retrieve-seq:

#!/usr/bin/perl -w
# retrieve-seq_client.pl - Client retrieve-seq using the S OAP::WSDL module
# and a property file

################################################### #############
##
## This script runs a simple demo of the web service inerface t o the
## RSAT tool retrieve-seq. It sends a request to the server fo r
## obtaining the start codons of 3 E.coli genes.
##
################################################### #############

use strict;
use SOAP::WSDL;
use Util::Properties;

## WSDL location
my $server = ’http://rsat.ulb.ac.be/rsat/web_services’ ;
my $WSDL = $server.’/RSATWS.wsdl’;
my $proxy = $server.’/RSATWS.cgi’;
my $property_file = shift @ARGV;
die "\tYou must specify the property file as first argument\ n"

unless $property_file;

## Service call
my $soap=SOAP::WSDL->new(wsdl => $WSDL)->proxy($proxy) ;
$soap->wsdlinit;

my $prop = Util::Properties->new();
$prop->file_name($property_file);
$prop->load();
my %args = $prop->prop_list();
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## Convert the query string into a list
my @queries = split(",", $args{query});
$args{query} = \@queries;

my $output_choice = $args{output_choice} || ’both’;

warn "\nThis demo script retrieves upstream sequences for a set of query genes\n\n";

## Send the request to the server
print "Sending request to the server $server\n";
my $som = $soap->call(’retrieve_seq’ => ’request’ => \%arg s);

## Get the result
if ($som->fault){ ## Report error if any

printf "A fault (%s) occured: %s\n", $som->faultcode, $som ->faultstring;
} else {

my $results_ref = $som->result; ## A reference to the result hash table
my %results = %$results_ref; ## Dereference the result hash table

## Report the remote command
my $command = $results{’command’};
print "Command used on the server: ".$command, "\n";

## Report the result
if ($output_choice eq ’server’) {

my $server_file = $results{’server’};
print "Result file on the server: ".$server_file;

} elsif ($output_choice eq ’client’) {
my $result = $results{’client’};
print "Retrieved sequence(s): \n".$result;

} elsif ($output_choice eq ’both’) {
my $server_file = $results{’server’};
my $result = $results{’client’};
print "Result file on the server: ".$server_file;
print "Retrieved sequence(s): \n".$result;

}
}

The property file looks like this:

output=both
organism=Escherichia_coli_K_12_substr__MG1655_uid57 779
query=metA,metB
all=0
noorf=1
from=0
to=2
feattype=CDS
type=upstream
format=fasta
lw=0
label=id,name
label_sep=
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nocom=0
repeat= 0
imp_pos=0

To run the client, give the path of the property file as argument.
In the downloadable clients, the ones with a name like *_client.pl use a propertyfile. Examples of

property files are in the sub-directory ’property_files’. When the property file contains the path to a
file, make sure you edit it according to your system.

22.3.8 Other tools in RSATWS
Following the examples above or using the code that is available for download1, you can easily access
the other RSA Tools for which Web Services have been implemented. You will find all you need to
know about the tools (parameters, etc.) in the documentation2.

22.4 Examples of WS client in java
First, you need to generate the libraries. There are tools, like Axis, which do it from the WSDL
document. These usually take the URL of that document as one of their parameters. In our case, it is
there:

http://rsat.ulb.ac.be/rsat/web_services/RSATWS.wsdl
Then you write a simple client like the one in the following example.

22.4.1 Same workflow as above with RSATWS
import RSATWS.OligoAnalysisRequest;
import RSATWS.OligoAnalysisResponse;
import RSATWS.PurgeSequenceRequest;
import RSATWS.PurgeSequenceResponse;
import RSATWS.RSATWSPortType;
import RSATWS.RSATWebServicesLocator;
import RSATWS.RetrieveSequenceRequest;
import RSATWS.RetrieveSequenceResponse;

public class RSATRetrievePurgeOligoClient {

/ **
* This script runs a simple demo of the web service interface to the

* RSAT tools retrieve-seq, purge-sequence and oligo-analys is linked in a workflow.

* It sends a request to the server for discovering 6 letter word s

* in upstream sequences of 5 yeast genes. The sequences are fir st

* retrieved and purged for repeated segments

* /
public static void main(String[] args) {

try

1http://rsat.ulb.ac.be/rsat/web_services.html
2http://rsat.ulb.ac.be/rsat/web_services/RSATWS_docu mentation.xml
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{

System.out.println("This demo script illustrates a work f low combining three requests to

String organism = "Saccharomyces_cerevisiae";

/ * Get the location of the service * /
RSATWebServicesLocator service = new RSATWebServicesLoc ator();
RSATWSPortType proxy = service.getRSATWSPortType();

/ ** Retrieve-seq part ** /

/ * prepare the parameters * /
RetrieveSequenceRequest retrieveSeqParams = new Retriev eSequenceRequest();

//Name of the query organism
retrieveSeqParams.setOrganism(organism);
//List of query genes
String[] q= { "PHO5", "PHO8", "PHO11", "PHO81", "PHO84" };
retrieveSeqParams.setQuery(q);
// Clip sequences to avoid upstream ORFs
retrieveSeqParams.setNoorf(1);
retrieveSeqParams.setNocom(0);
// The result will stay in a file on the server
retrieveSeqParams.setOutput("server");

/ * Call the service * /
System.out.println("Retrieve-seq: sending request to th e server...");
RetrieveSequenceResponse res = proxy.retrieve_seq(retr ieveSeqParams);

/ * Process results * /
//Report the remote command
System.out.println("Command used on the server:"+ res.ge tCommand());
//Report the server file location
String retrieveSeqFileServer = res.getServer();
System.out.println("Result file on the server::\n"+ res. getServer());

/ ** Purge-sequence part ** /

/ * prepare the parameters * /
PurgeSequenceRequest purgeSeqParams = new PurgeSequence Request();
// The result will stay in a file on the server
purgeSeqParams.setOutput("server");
// Output from retrieve-seq part is used as input here
purgeSeqParams.setTmp_infile(retrieveSeqFileServer) ;

/ * Call the service * /
System.out.println("Purge-sequence: sending request to the server...");
PurgeSequenceResponse res2 = proxy.purge_seq(purgeSeqP arams);

/ * Process results * /
//Report the remote command
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System.out.println("Command used on the server:"+ res2.g etCommand());
//Report the server file location
String purgeSeqFileServer = res2.getServer();
System.out.println("Result file on the server::\n"+ res2 .getServer());

/ ** Oligo-analysis part ** /

/ * prepare the parameters * /
OligoAnalysisRequest oligoParams = new OligoAnalysisReq uest();
// Output from purge-seq part is used as input here
oligoParams.setTmp_infile(purgeSeqFileServer);
oligoParams.setOrganism(organism);
// Length of patterns to be discovered
oligoParams.setLength(6);
// Type of background used
oligoParams.setBackground("upstream-noorf");
// Returned statistics
oligoParams.setStats("occ,proba,rank");
// Do not allow overlapping patterns
oligoParams.setNoov(1);
// Search on both strands
oligoParams.setStr(2);
// Sort the result according to score
oligoParams.setSort(1);
// Lower limit to score is 0, less significant patterns are no t displayed
oligoParams.setLth("occ_sig 0");

/ * Call the service * /
System.out.println("Oligo-analysis: sending request to the server...");
OligoAnalysisResponse res3 = proxy.oligo_analysis(olig oParams);

/ * Process results * /
//Report the remote command
System.out.println("Command used on the server:"+ res3.g etCommand());
//Report the result
System.out.println("Discovered oligo(s):\n"+ res3.get Client());
//Report the server file location
System.out.println("Result file on the server::\n"+ res3 .getServer());

}
catch(Exception e) { System.out.println(e.toString());
}

}
}

22.5 Examples of WS client in python

22.5.1 Get infos on genes having methionine or purine in their
description, as above in perl

#! /usr/bin/python
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class GeneInfoRequest:

def __init__(self):

self.organism = None
self.query = None
self.noquery = None
self.desrc = None
self.full = None
self.feattype = None

if __name__ == ’__main__’:

import os, sys, SOAPpy

if os.environ.has_key("http_proxy"):
my_http_proxy=os.environ["http_proxy"].replace("htt p://","")

else:
my_http_proxy=None

organism = "Escherichia_coli_K_12_substr__MG1655_uid5 7779"
query = ["methionine", "purine"]
full = 0
noquery = 0
descr = 0
feattype = "CDS"

url = "http://rsat.ulb.ac.be/rsat/web_services/RSATWS .wsdl"
server = SOAPpy.WSDL.Proxy(url, http_proxy = my_http_pro xy)
server.soapproxy.config.dumpSoapOutput = 1
server.soapproxy.config.dumpSoapInput = 1
server.soapproxy.config.debug = 0

req = GeneInfoRequest()
req.organism = organism
req.query = query
req.full = 0
req.descr = 1

res = server.gene_info(req)

print res.command
print res.client

22.6 Full documentation of the RSATWS interface
The full documentation can be found there:

http://rsat.ulb.ac.be/rsat/web_services/RSATWS_docu mentation.pdf
Please refer to the documentation of each RSAT application for further detail on each program.
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23 Graph analysis

23.1 Introduction

23.1.1 Definition
Informally speaking, agraph is a set of objects called points, nodes, or vertices connected by links
called lines or edges.

More formally, a graph or undirected graphG is an ordered pairG = (V,E) that is subject to the
following conditions :

• V is a set, whose elements are called vertices or nodes

• E is a set of pairs (unordered) of distinct vertices, called edges or lines.

The vertices belonging to an edge are called the ends, endpoints, or endverticesof theedge. V (and
henceE) are taken to be finite sets.

The degreeof a vertex is the number of other vertices it is connected to by edges. As graphs are
used to model all kinds of problems and situation (networks, maps, pathways, ...), nodes and vertex
may present attributes (color, weight, label, ...).

23.1.2 Some types of graphs

Undirected graph

An edge between vertexA and vertexB corresponds to an edge betweenB andA.

Directed graph (digraph)

An edge between vertexA and vertexB does not correspond to a vertex betweenB andA. In that case,
edges are said to be arcs.

Weighted graph

A weight can be placed either on the nodes or on the edges of the graph. Aweight on the edge may for
example represent a distance between two nodes or the strength an interaction.

Bipartite graphs

A bipartite graph is a special graph where there are two types of nodes :A andB and where each node
of typeA is only connected to nodes of typeB and vice-versa.
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23.1.3 Graph files formats

List of edges

This format is the more intuitive way to encode a graph. It consists in a list of edges between the nodes.
The names of the nodes are separated using some field separator, in RSAT, a tabulation. Some attributes
of the edges can be placed in the following columns (weight, label, color).

n1 n2 3.2
n1 n2 1.4
n2 n3 4
n3 n4 6

GML format

Among other, GML format allows to specify the location, the color, the label and the width of the nodes
and of the edges. A GML file is made up of pairs of a key and a value. Examplefor keys are graphs,
node and edges. You can then add any specific information for each key. GML format can be used by
most graph editors (like cytoscape and yEd).

For more information on the GML format, seehttp://www.infosun.fim.uni-passau.de/Graphlet/GML/

DOT format

DOT is a plain text graph description language. The DOT files are generallyused by the programs
composing the GraphViz suite (dot, neato, dotty, ...). It is a simple way of describing graphs that
both humans and computer programs can use. DOT graphs are typically filesthat end with the.dot
extension. Like GML, with DOT you can specify a lot of feature for the nodes (color, width, label).

23.2 RSAT Graph tools

23.2.1 convert-graph
This program converts a graph encoded in some format (gml, tab) to some other (gml, tab, dot). The
source node are in the first column of this file, target nodes in the second column and the edge weights
are in the third one. By default, column 1 contains the source node, column 2 the target nodes and there
is no weight.

convert-graph -i demo_graph.tab -o demo_graph.gml -from t ab -to gml -scol 1 -tcol 2 -wcol

convert-graph also allows to randomize a graph using-randomoption, each node keeping the same
number of neighbours (degree). You can specify the number of required random graphs.

convert-graph -i demo_graph.tab -o random_graph -random 1 00 -from tab -to tab

This command will create 100 different random graph from the file demo_graph.tab.
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23.2.2 graph-node-degree
Calculate the node degree of each node (or of a selection of nodes) andspecifies if this node is a seed
or a target node.

graph-node-degree -all -i demo_graph.tab

23.2.3 graph-neighbours
Extracts the neighbourhood from a graph (the number of steps may be specified) of all or of a set of
seed nodes.

graph-neighbours -i demo_graph.tab -steps 1 -seed n2 -self

With this command,graph-neighbours will retrieve all the first neighbours of noden2 , n2 being
included. To also get the neighbours of the neighbours ofn2, we should use the option-steps 2.
The output file may then be used withcompare-classesprogram to compare groups of neighbours to
annotated groups of nodes. A file containing a list of seed nodes can be given to graph-neighbours
using-seedfoption.

Using the -stats option with a weighted graph will return one line for each seednode (-steps must
then be equal to 1).

23.2.4 compare-graphs
Computes the intersection, union or difference of two graphs (a reference graph and a query graph).
The format of each input graph may be specified so that you can comparea gml encoded graph to a
edge-list format graph.

compare-graphs -Q query_graph.tab -R reference_graph2.g ml \
-return union -out_format tab -outweight Q::R \
-in_format_R gml -wcol_Q 3

With this command, you will compare query_graph.tab and reference_graph2.gml. The output will
be an edge list format file. For each edge, it will specify if the edge belongs to the reference graph, to
the query graph or to both of them and colour the edges accordingly.

23.2.5 graph-get-clusters
Extract from a graph a subgraph specified by a set ofclustersof nodes. It returns the nodes belonging
to the clusters and the intra-cluster arcs, and ignore the inter-cluster arcs.

graph-get-clusters -i demo_graph_cl.tab -clusters demo_ graph_clusters.tab \
-out_format gml -o demo_graph_clusters_ex.gml

Using the-distinct option, nodes belonging to more than one cluster are duplicated. This option
should be used for visualisation purpose only.

Using the-inductedoption, you can extract a subgraph containing all the nodes specified in the
cluster file. In that case, you don’t specially need a two-column file.
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23.2.6 compare-graph-clusters
With the -return tableoption, this program counts the number (or the sum of the weights) of intra
cluster (or class) edges in a graph according to some clustering (classification) file and the number of
edges in each cluster.

compare-graph-clusters -i demo_graph_cl.tab \
-clusters demo_graph_clusters.tab -v 1 -return table

With the -return graphoption, this program returns some cluster characteristics for each edge,i.e.,
the number of time the source node and the target node were found within the same cluster, the number
of time the source node was found without the target node, ...
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24 Pathway extraction tools

24.1 Using pathway extraction tools

24.1.1 Listing tools and getting help
You can list available tools by typing:

java graphtools.util.ListTools

All tools provide a-h option to display help.

24.1.2 Abbreviating tool names
The command line tool names may be simplified by setting aliases. For example, in the bash shell:

alias Pathfinder="java graphtools.algorithms.Pathfind er"

allows to type:

Pathfinder -h

instead of:

java graphtools.algorithms.Pathfinder -h

24.1.3 Increasing JVM memory
For large graphs, you may need to increase the memory allocated to the java virtual machine. You can
do so by specifying the-Xmx option.

Example:

java -Xmx800m graphtools.algorithms.Pathfinder -h

24.2 Obtaining metabolic networks

24.2.1 Downloading MetaCyc and KEGG generic metabolic
networks from the NeAT web server

Metabolic networks can be downloaded from the NeAT web server. Go to the menu entry “Path finding
and pathway extraction”, open the “Pathway extraction” page and click on“More networks can be
downloaded here.” This will open a table with tab-delimited generic MetaCyc and KEGG networks.
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24.2.2 Building KEGG generic metabolic networks

Reaction network
To build the directed reaction network, type:

java -Xmx800m graphtools.parser.KeggLigandDataManager -m

The network is stored in the current directory.
The execution of this command takes quite long, because it fetches the reaction and compound files

from KEGG’s ftp repository atftp.genome.jp . To get these files, theKeggLigandDataManager
requireswget to be installed and in your path.wget is freely available fromhttp://www.gnu.org/software/wget/

Alternatively, you may first download the reaction and compound files yourself from the KEGG ftp
server. Type in your browser (or in your favourite ftp client):
ftp://anonymous@ftp.genome.jp/pub/kegg/ligand/compo und/compound
and save the compound file into$RSAT/data/KEGG/KEGG_LIGAND. Do the same for the reaction
file at
ftp://anonymous@ftp.genome.jp/pub/kegg/ligand/react ion/reaction .
Then you can run the command above to generate the reaction network.

RPAIR network
To construct the undirected RPAIR network, type:

java -Xmx800m graphtools.parser.KeggLigandDataManager -s -u

Creating the RPAIR network will also create therpairs.tabfile, which can be placed in the KEGG
directory for later use by typing:

cp $RSAT/data/KEGG/KEGG_LIGAND/rpairs.tab $RSAT/data/ KEGG/rpairs.tab

An older version of this file is also available from theNeATweb server in the data/KEGG directory.

Reaction-specific RPAIR network
For the reaction-specific undirected RPAIR network, type:

java -Xmx800m graphtools.parser.KeggLigandDataManager -t -u

24.2.3 Building KEGG organism-specific metabolic networks
The MetabolicGraphProvider tool allows you to merge KEGG KGML files into a metabolic network
specific to a set of organisms.

Prerequisites
You may first create the list of available KEGG organisms:

java -Xmx800m graphtools.parser.MetabolicGraphProvide r -O

This command will create the fileKegg_organisms_list.txtin the current directory. Since this file is
needed by theMetabolicGraphProvider , you may copy it to its default location:

cp Kegg_organisms_list.txt \$RSAT/data/KEGG/Kegg_orga nisms_list.txt
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Alternatively, you may obtain an older version of this file from theNeATweb server in the data/KEGG
directory.

Creating an organism-specific reaction network for E. coli
The command below builds theE. coli-specific metabolic reaction network from its KGML files:

java -Xmx800m graphtools.util.MetabolicGraphProvider - i eco -o ecoNetwork.tab

The KGML files are automatically obtained from the current KEGG database (which may take very
long). Alternatively, they can be downloaded manually fromhttp://www.genome.jp/kegg/xml/ .
If downloaded manually, all organism-specific KGML files have to be placedin a folder named with
the organism’s KEGG abbreviation (e.g.ecofor E. coli). The folder should be located in the$RSAT/-
data/KEGGdirectory.

We can also merge the KGML files of several organisms into one network andapply some filtering
as follows (in one line):

java -Xmx800m graphtools.util.MetabolicGraphProvider - i ecv/eco -o \
eco_ecv_Network.tab -c C00001/C000002/C00003/C00004/C 00005/C00006/C00007/C00008

This command will construct a merged metabolic network from twoE. coli strains (Escherichia
coli K-12 MG1655andEscherichia coli O1 (APEC)) and in addition filter out some highly connected
compounds (water, ATP, NAD+, NADH, NADPH, NADP+, oxygen and ADP).

24.2.4 Building metabolic networks from biopax files
Several metabolic databases store their data in biopax format (http://www.biopax.org/ ), e.g.
BioCyc and Reactome. You can create a metabolic network from a biopax file using theGDLCon-
verter .

For instance, you may download the lysine biosynthesis I pathway fromhttp://metacyc.org/
in biopax format and save it into a file namedlysine_pwy1.xml. You can then obtain a tab-delimited
metabolic network from this file using the command below (in one line). Note that themetabolic
network preserves the reaction directions indicated in the biopax file, that isirreversible reactions are
kept.

java graphtools.util.GDLConverter -i lysine_pwy1.xml
-o lysine.txt -O tab -I biopax -b -d

Option -O indicates the output format (tab-delimited),-I specifies the input format (biopax in this
case),-b flags that attributes required for the metabolic format should be set and-d tells the program
to construct a directed network.

TheGDLConverter may be applied in general to interconvert networks in different formats.

24.3 Finding k-shortest paths
Pathways may be extracted from metabolic networks by enumerating thek-shortest paths between a set
of source compounds/reactions and a set of target compounds/reactions.

In metabolic networks, some compounds such as ATP or NADPH are involvedin a large number of
reactions, thus acting as shortcuts for the path finding algorithm. However,paths crossing these highly
connected compounds are not biochemical relevant. In order to prevent the path finding algorithm to
traverse these compounds, the metabolic network should be weighted.
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For example, assume you have generated (24.2.2) or downloaded (24.2.1) a KEGG RPAIR network
stored in the fileKEGG_RPAIR_undirected.txt. Given this network, we can list the three highest-
ranked lightest paths between aspartate (KEGG identifier: C00049) and lysine (KEGG identifier:
C00047) with the command below (in one line):

java -Xmx800m graphtools.algorithms.Pathfinder -g KEGG_ RPAIR_undirected.txt
\
-s C00049 -t C00047 -y con -b -r 3 -f tab

where option-s specifies the source node (more than one can be given),-t the target node (as for
the source, more than one target can be specified),-f indicates the format of the input network (tab-
delimited),-r indicates the rank, option-y gives the weight policy to be applied (con sets the weight of
compounds to their degree and the weight of reactions to one) and-b flags that the input network is
metabolic.

This command will yield the following output (with KEGG RPAIR version 49.0):

INFO: Pathfinder took 5014 ms to perform its task.
; Experiment exp_0
; Pathfinding results
; Date=Fri Apr 30 16:34:27 CEST 2010
; ===============================
; INPUT
; Source=[C00049]
; Target=[C00047]
; Graph=KEGG_RPAIR_undirected.txt
; Directed=false
; Metabolic=true
; RPAIR graph=true
; CONFIGURATION
; Algorithm=rea
; Weight Policy=con
; Maximal weight=2147483647
; Exclusion attribute=ExclusionAttribute
; Rank=3
; REA timeout in minutes=5
; EXPLANATION OF COLUMNS
; Start node=given start node identifier
; End node=given end node identifier
; Path=path index
; Rank=rank of path (paths having same weight have
the same rank, though their step number might differ)
; Weight=weight of path (sum of edge weights)
; Steps=number of nodes in path
; Path=sequence of nodes from start to end node that forms the path
; ===============================
#start end path rank weight steps path
C00049 C00047 1 1 122.0 15 C00049->RP00932->C03082
->RP02107->C00441->RP02109->C03340->RP00740->C03972 ->RP03970->C03871
->RP02474->C00680->RP00907->C00047
C00049 C00047 2 2 126.0 15 C00049->RP00932->C03082
->RP02107->C00441->RP02109->C03340->RP00740->C03972 ->RP11205->C00666
->RP02449->C00680->RP00907->C00047
C00049 C00047 3 3 134.0 11 C00049->RP00116->C00152
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->RP06538->C00151->RP01393->C00405->RP07206->C00739 ->RP00911->C00047
C00049 C00047 4 4 143.0 13 C00049->RP03035->C04540
->RP01395->C00152->RP06538->C00151->RP01393->C00405 ->RP07206->C00739
->RP00911->C00047

The format of the output can be changed to output the path list as a network. This network can then
be visualized using thePathwayDisplayer as explained in section24.5.4.

To output the path list as a network in gml format, run the following command (in one line):

java -Xmx800m graphtools.algorithms.Pathfinder -g KEGG_ RPAIR_undirected.txt
-s C00049 -t C00047 -y con -b -r 3 -f tab -T pathsUnion -O gml
-o asp_lys_paths.gml

The fileasp_lys_paths.gmlcreated in the current directory contains the network in gml format.

24.4 Linking genes to reactions
The main application of pathway extraction is to interpret a set of associated enzyme-coding genes. An
association can for example be co-expression in a microarray, co-regulation in an operon or regulon or
co-occurrence in a phylogenetic profile.

In this section, we will see how to link enzyme-coding genes to their reactions.This is not a straight-
forward task, as an N:N relationship exists between genes, EC numbers, reactions and reactant pairs.

24.4.1 Prerequisites
In order to link genes to reactions, the metabolic database needs to be installed. The installation of
this database is described in chapter “Metabolic Pathfinder and Pathway extraction" in theNeATweb
server install guide, which is available from theNeATweb server download section.

24.4.2 Linking genes of the isoleucine-valine operon to reactions
The isoleucine-valine operon (RegulonDB identifier: ilvLG_1G_2MEDA) inEscherichia coliis known
to contain enzymes of the isoleucine and valine biosynthesis pathway.

It consists of the following genes:

ilvL ilvG_1 ilvG_2 ilvM ilvE ilvD ilvA

These genes can be linked to KEGG reactant pairs using the command below (in one line):

java graphtools.util.SeedConverter -i ilvL/ilvG_1/ilvG _2/ilvM/ilvE/ilvD/ilvA
-I string -O eco -o ilv_operon_seeds.txt -r

Option-r flags that genes should be mapped to (main) reactant pairs,-O specifies the source organ-
ism of the genes,-i lists the genes and-I specifies the input format.

24.5 Predicting metabolic pathways
Given a set of seeds (compounds or reactions/reactant pairs) and a metabolic network, the task of the
pathway extraction tool is to extract a metabolic pathway that connects these seeds in the metabolic
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network. The tool is quite generic and can be applied to any network and seed node set. However, it
has been tailored to metabolic pathway prediction.

24.5.1 Predicting a metabolic pathway for the isoleucine-valine
operon

Assume you have generated the seed input file from section24.4.2and the KEGG RPAIR graph as
described in section24.2.2. The KEGG RPAIR graph is assumed to be stored in a tab-delimited file
namedKEGG_RPAIR_undirected.txt. Then we can predict the pathway for the genes in the isoleucine-
valine operon with the following command (in one line):

java -Xmx800m graphtools.algorithms.Pathwayinference - g
KEGG_RPAIR_undirected.txt -i ilv_operon_seeds.txt -b -f tab
-y con -E Result -a takahashihybrid -U -o ilv_predicted_pat hway.tab

where option-b specifies that the network is a metabolic network,-f indicates the input network
format (tab-delimited),-a specifies the algorithm to be used and-y indicates the weight policy to be
applied (con stands for connectivity, which means that compound nodes receive a weight corresponding
to their degree). Option-E is used to indicate the name of the folder where results are stored. This is
especially useful when several predictions are carried out in a row, because the output file in this case
reports the merged pathway. In the example above, the result folder serves to store the properties of the
predicted pathway (obtained with option-U ).

A variant of the pathway extraction exploits the fact that we work with the KEGG RPAIR graph,
which allows us to link adjacent main reactant pairs (i.e. reactant pairs sharing a compound). This is
done in a preprocessing step (option-P):

java -Xmx800m graphtools.algorithms.Pathwayinference - g
KEGG_RPAIR_undirected.txt -i ilv_operon_seeds.txt -b -f tab -y con -P
-a takahashihybrid -o ilv_predicted_pathway_preprocess ed.tab

24.5.2 Mapping reference pathways onto the predicted pathway
The predicted metabolic pathway can be mapped to reference pathways stored in the metabolic database.
This can be done as follows:

java graphtools.util.MetabolicPathwayProvider -i ilv_p redicted_pathway.tab
-I tab -D KEGG -o ilv_predicted_pathway_mapped.tab

where option-D indicates that reference pathways should be taken from KEGG and-I indicates the
input format of the pathway. In the output pathway, nodes mapping to reference pathways are annotated
with a color and the name of the corresponding reference pathway. The program also outputs the color-
code of mapping reference pathways:

INFO: Legend
BurlyWood: Valine,_leucine_and_isoleucine_biosynthes is
orange: no match to any reference pathway
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24.5.3 Annotating the predicted pathway
The nodes of a predicted metabolic pathway can be labeled with names (compounds), EC numbers
(reactions) and genes (reactions). The requires the metabolic databaseto be installed (see24.4.1).

The command below annotates the metabolic pathway namedilv_predicted_pathway.taband colors
its seed nodes (stored in the seed node fileilv_operon_seeds.txt) in blue:

java graphtools.util.GraphAnnotator -i ilv_predicted_p athway.tab -I tab
-o ilv_predicted_pathway_annotated.tab -O tab -k -b
-F ilv_operon_seeds.txt

Option-k tellsGraphAnnotator to associate EC numbers to KEGG genes using the current KEGG
database, -b indicates that the pathway is a metabolic pathway, -I specifies the input format of the
pathway to be annotated (tab-delimited) and -F indicates the location of the seednode file.

24.5.4 Visualizing the predicted pathway
The visualization of a pathway requiresgraphviz to be installed, which is available herehttp://www.graphviz.org/

With graphviz installed, the pathway can be visualized as follows:

java graphtools.util.PathwayDisplayer -i ilv_predicted _pathway_annotated.tab
-I tab -p

Option -p tells PathwayDisplayer to generate the image withgraphviz, -I indicates the input for-
mat of the pathway to be displayed (tab-delimited).
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